Information Percolation in Large Markets

from work by
Darrell Duffie, Gaston Giroux, Semyon Malamud, Gustavo Manso

Stanford Probability Seminar, October, 2008

Information Percolation

- Markets
- Hayek (1945)
- Wolinsky (1990)
- Golosov, Lorenzoni, Tsyvinski (2008)
- Social learning
- Banerjee and Fudenberg (1995)
- Acemoglu (2008)

Setting

From Duffie and Manso (AER 2007):

- A continuum of agents matched pairwise independently to other agents at mean rate r.
- Payoff relevant states: $X= \begin{cases}H & \text { with probability } \nu \\ L & \text { with probability } 1-\nu\end{cases}$
- Agent k is endowed with $S_{k}=\left\{s_{1}, \ldots, s_{k_{n}}\right\},\{0,1\}$-signals that are X-conditionally independent, with

$$
\mathrm{P}\left(s_{i}=1 \mid X=H\right) \geq \mathrm{P}\left(s_{i}=1 \mid X=L\right) .
$$

- For almost every pair j and k of agents, S_{j} and S_{k} are disjoint.
- If j and k are matched, they share endowed and previously gathered signals.

Information is Additive in Types

- For any conditional probability $p \in(0,1)$ of the event $\{X=H\}$, we define the associated information type

$$
\Theta(p)=\log \frac{(1-p) \nu}{(1-\nu) p}
$$

- Result: Sharing information is additive in types. That is, whenever agents of types θ and ϕ meet, both become type $\theta+\phi$. This process is inductive over successive matching.

Setting for Information Percolation

Intuition: If the cross-sectional distribution of types is discrete, then the rate at which new agents of type θ are created is

$$
2 r \int \mu_{t}(\theta-z) \mu_{t}(z) d z=2 r\left(\mu_{t} * \mu_{t}\right)(\theta) \text { a.s. }
$$

This sort of application of the LLN for random matching is known as the Stosszahlansatz (Boltzmann), and has been shown rigorously only in discrete time (Duffie and Sun, AAP, 2007).

Solution for Cross-Sectional Distribution of Information

- The Boltzmann equation for the cross-sectional distribution μ_{t} of types is, for $\lambda=2 r$,

$$
\begin{equation*}
\frac{d}{d t} \mu_{t}=-\lambda \mu_{t}+\lambda \mu_{t} * \mu_{t} \tag{1}
\end{equation*}
$$

- Standing assumption: On the event $\{X=H\}$, the first moment of μ_{0} is strictly positive, and μ_{0} has a moment generating function $z \mapsto \int e^{z \theta} \mu_{0}(d \theta)$ that is finite on a neighborhood of $z=0$.
- Proposition (DGM, 2008). The unique solution of (1) is the Wild sum

$$
\begin{equation*}
\mu_{t}=\sum_{n \geq 1} e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1} \mu_{0}^{* n} . \tag{2}
\end{equation*}
$$

Sketch of Proof of Wild Sum

The ODE for the characteristic function $\varphi(\cdot, t)$ of μ_{t},

$$
\frac{\partial \varphi(s, t)}{\partial t}=-\lambda \varphi(s, t)+\lambda \varphi^{2}(s, t)
$$

is solved by

$$
\varphi(s, t)=\frac{\varphi(s, 0)}{e^{\lambda t}(1-\varphi(s, 0))+\varphi(s, 0)}
$$

This solution can be expanded as

$$
\varphi(s, t)=\sum_{n \geq 1} e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1} \varphi^{n}(s, t)
$$

which is identical to the Fourier transform of the Wild sum (2).

Market Example

- Uninformed buyers of a contract promising X randomly select two informed sellers at intensity λ.
- A second-price auction allocates the trade to the lowest-bidding seller. (The Wallet Game.)
- In the unique symmetric equilibrium, sellers bid their posterior probabilities that X is high, revealing their types.

On the event $\{X=H\}$, the evolution of the cross-sectional population density of posterior probabilities of the event $\{X=H\}$.

Convergence Rate of Population Information

Let π_{t} be the cross-sectional distribution of posteriors at time t.
Definition: The rate of convergence of π_{t} to π_{∞} is $\alpha>0$ if there are constants κ_{0} and κ_{1} such that, for any b in $(0,1)$,

$$
e^{-\alpha t} \kappa_{0} \leq\left|\pi_{t}(0, b)-\pi_{\infty}(0, b)\right| \leq e^{-\alpha t} \kappa_{1} .
$$

Proposition: π_{t} converges at rate λ to δ_{0} on the event $\{X=L\}$ and to δ_{1} on $\{X=H\}$.

Meetings of More than Two at a Time

- Groups of m agents are randomly matched. Because each agent is matched to others at rate r, the total annual quantity of attendance at meetings is $\lambda=m r$ a.s.
- The associated Boltzmann equation for the type distribution is

$$
\frac{d}{d t} \mu_{t}=-\lambda \mu_{t}+\lambda \mu_{t}^{* m}
$$

- The solution is explicit as a Wild sum.

Wild Summation Solution

The unique solution of the Boltzmann equation for m-at-a-time matching is

$$
\mu_{t}=\sum_{n \geq 1} a_{(m-1)(n-1)+1} e^{-\lambda t}\left(1-e^{-(m-1) \lambda t}\right)^{n-1} \mu_{0}^{*[(m-1)(n-1)+1]}
$$

where $a_{1}=1$ and, for $n>1$,

$$
a_{(m-1)(n-1)+1}=\frac{1}{m-1}\left(1-\sum_{\substack{i_{1}, \ldots, i_{(m-1)}<n \\ \sum i_{k}=n+m-2}} \prod_{k=1}^{m-1} a_{(m-1)\left(i_{k}-1\right)+1}\right) .
$$

Invariance of Convergence Rate to Group Size for a Given Total Rate of Meeting Attendance

Proposition: For any group size m, the cross-sectional distribution π_{t} of posteriors converges at rate λ.

Malamud (2008) has extended this result to the case of groups of a random size.

Groups of 2 (blue) versus Groups of 3 (red)

Groups of 2 (blue) versus Groups of 3 (red)

Groups of 2 (blue) versus Groups of 3 (red)

Groups of 2 (blue) versus Groups of 3 (red)

Groups of 2 (blue) versus Groups of 3 (red)

Groups of 2 (blue) versus Groups of 3 (red)

Groups of 2 (blue) versus Groups of 3 (red)

Equilibrium Search Dynamics

With Manso and Malamud

- Signals and X are joint Gaussian, with $\operatorname{corr}\left(X, s_{i}\right)=\rho$.
- Agents arrive at a rate proportional to the population size, and leave at exponentially distributed times, pairwise independently.
- Agents meet others at a mean rate proportional to the rate at which they choose to expend search costs.
- At entry, agent i receives $N_{i 0}$ signals, iid across agents.
- At exit, an agent chooses an action A, with cost $(X-A)^{2}$.
- The optimal exit action is $A=E\left(X \mid \mathcal{F}_{i t}\right)$, so the expected exit cost is the $\mathcal{F}_{\text {it }}$-conditional variance of X,

$$
\sigma_{i t}^{2}=v\left(N_{i t}\right) \equiv \frac{1-\rho^{2}}{1+\rho^{2}\left(N_{i t}-1\right)}
$$

Information Transmission

- Agent i has current mean $E\left(X \mid \mathcal{F}_{i t}\right)$ and "precision" $N_{i t}$.
- When agents i and j meet, their posterior precisions become $N_{i t}+N_{j t}$. Their posterior means are given by the usual precision-weighted average of their priors.
- At constant meeting intensity λ, the cross-sectional precision distribution μ_{t} thus behaves as before, except for the effect of arrivals and departures.

Search Technology

- Random matching (Stosszahlanzatz).
- Given current effort c by an agent, the mean rate of matching with someone from a unit mass of agents using search effort b is cb.
- The rate of cost of search effort c is $K(c)$, for $c \in\left[c_{L}, c_{H}\right]$.

Separability of Posterior Precision and Mean

Proposition. For any search-effort policy function $C: \mathbb{N} \rightarrow\left[c_{L}, c_{H}\right]$, the cross-sectional density f_{t} of precisions and posterior means of the agents is almost surely given by

$$
\begin{equation*}
f_{t}(n, y, \omega)=\mu_{t}(n) p_{n}(y \mid X(\omega)) \tag{3}
\end{equation*}
$$

where μ_{t} is the unique solution of the Boltzmann equation for the evolution of the cross-sectional distribution of information precision and $p_{n}(\cdot \mid X)$ is the X-conditional Gaussian density of $E\left(X \mid s_{1}, \ldots, s_{n}\right)$, for any n signals s_{1}, \ldots, s_{n}.

Stationary Measure

In a stationary setting with search policy C, the precision distribution μ solves

$$
0=\eta(\gamma-\mu)+\mu^{C} * \mu^{C}-\mu^{C} \mu^{C}(\mathbb{N}),
$$

where

- η is the mean replacement rate of agents.
- γ is the distribution of $N_{i 0}$.
- μ^{C} is the effort-weighted measure, with $\mu^{C}(n)=C(n) \mu(n)$.

Stationary Measure

Lemma. Given any policy C, there is a unique measure μ satisfying the stationary-measure equation.

This measure μ is characterized in the paper, and under technical conditions is the pointwise limit of μ_{t}, invariant to μ_{0}.

Optimality and Equilibrium

Given a policy C for other agents, agent i has the value function $V(\cdot)$ defined by

$$
V\left(N_{i t}\right)=\operatorname{ess} \sup _{\phi} E\left(-e^{-r(\tau-t)} v\left(N_{i \tau}\right)-\int_{0}^{\tau} e^{-r(u-t)} K\left(\phi_{u}\right) d u \mid \mathcal{F}_{i t}\right),
$$

which is characterized by the associated HJB equation.
The policy C is an equilibrium if $\phi_{t}^{*}=C\left(N_{i t}\right)$ is optimal.

Trigger Policies

A trigger policy C^{N}, for some integer $N \geq 1$, is defined by

$$
\begin{aligned}
C_{n}^{N} & =c_{H}, \quad n<N, \\
& =c_{L}, \quad n \geq N .
\end{aligned}
$$

Information Sharing Opportunities

Proposition. Let μ^{M} and ν^{N} be the unique stationary measures corresponding to trigger policies C^{M} and C^{N} respectively. Let $\mu^{C, N}(n)=\mu^{N}(n) C^{N}(n)$ denote the associated search-effort-weighted measure. If $N>M$, then $\mu^{C, N}$ has first order stochastic dominance (FOSD) over $\mu^{C, M}$.

Information Sharing Opportunities

Proposition. Let μ^{M} and ν^{N} be the unique stationary measures corresponding to trigger policies C^{M} and C^{N} respectively. Let $\mu^{C, N}(n)=\mu^{N}(n) C^{N}(n)$ denote the associated search-effort-weighted measure. If $N>M$, then $\mu^{C, N}$ has first order stochastic dominance (FOSD) over $\mu^{C, M}$.

This comparison result need not hold for non-trigger policies!
There exist cases with $B \leq C$ but μ^{B} having FOSD over μ^{C}.

Optimal Effort is Decreasing in Precision

Proposition. Suppose that K is increasing, convex, and differentiable. Then, given any population behavior (μ, \boldsymbol{C}), the optimal search effort policy function is decreasing in precision.

Proposition. Suppose that $K(c)=\kappa c$ for some scalar $\kappa>0$. Then, given (μ, C), some a trigger policy C^{N} that is optimal for all agents.

Existence of Equilibrium

Theorem. Suppose that $K(c)=\kappa c$ for some scalar $\kappa>0$. Then there exists a trigger policy that is an equilibrium.

The Equilibrium Impact of a Search Subsidy

- A tax τ is charged to each agent entering the market
- The proceeds are used to subsidize search so that the search cost is $K_{\delta}(c)=(\kappa-\delta) c$.

Proposition. If C^{N} is an equilibrium with subsidy δ, then for any $\delta^{\prime} \geq \delta$, there exists some $N^{\prime} \geq N$ such that $C^{N^{\prime}}$ is an equilibrium with subsidy δ^{\prime}.

Example

1. For some integer $N>1, \gamma(0)=1 / 2, \gamma(N)=1 / 2$, and $c_{L}=0$.
2. It is possible to choose parameters so that, given market conditions (μ^{N}, C^{N}), agents slightly prefer policy C^{0} over C^{N}.
3. We can choose the subsidy rate δ so that, given market conditions (μ^{N}, C^{N}), agents strictly prefer C^{N} to C^{0}.
4. For sufficiently large N all agents have strictly higher indirect utility.

The Equilibrium Impact of Public Information

Agents are given $M \geq 1$ additional public signals at entry.
Proposition If C^{N} is an equilibrium with M public signals, then for any $M^{\prime} \leq M$, there exists some $N^{\prime} \geq N$ such that $C^{N^{\prime}}$ is an equilibrium with M^{\prime} public signals.

We provide examples with strict dominance.

Example

1. Suppose, for some integer $N>1$, that $\pi_{0}=1 / 2, \pi_{N}=1 / 2$, and $c_{L}=0$.
2. Choose parameters so that, given market conditions $\left(\mu^{N}, C^{N}\right)$ agents are indifferent between policies C^{N} and C^{0}.
3. Give each agent $M=1$ public signal at entry.
4. All agents strictly prefer C^{0} to C^{N}
5. For sufficiently large N all agents have strictly lower indirect utility.

Conclusion

- Model of social learning with endogenous search intensity.
- Social learning may slow down or even collapse:
- coordination problems.
- externality problems.
- Two policy interventions:
- search subsidy.
- education at entry.

Conclusion

- Model of social learning with endogenous search intensity.
- Social learning may slow down or even collapse:
- coordination problems.
- externality problems.
- Two policy interventions:
- search subsidy.
- education at entry.

Conclusion

- Model of social learning with endogenous search intensity.
- Social learning may slow down or even collapse:
- coordination problems.
- externality problems.
- Two policy interventions:
- search subsidy.
- education at entry.

