Information Percolation in Large Markets

from work by Darrell Duffie, Gaston Giroux, Semyon Malamud, Gustavo Manso

Stanford Probability Seminar, October, 2008

Information Percolation

Markets

- Hayek (1945)
- Wolinsky (1990)
- Golosov, Lorenzoni, Tsyvinski (2008)

Social learning

- Banerjee and Fudenberg (1995)
- Acemoglu (2008)

Setting

From Duffie and Manso (AER 2007):

► A continuum of agents matched pairwise independently to other agents at mean rate *r*.

► Payoff relevant states:
$$X = \begin{cases} H & \text{with probability } \nu \\ L & \text{with probability } 1 - \nu \end{cases}$$

► Agent k is endowed with S_k = {s₁,..., s_{k_n}}, {0, 1}-signals that are X-conditionally independent, with

$$P(s_i = 1 | X = H) \ge P(s_i = 1 | X = L).$$

- For almost every pair *j* and *k* of agents, S_j and S_k are disjoint.
- If j and k are matched, they share endowed and previously gathered signals.

Information is Additive in Types

For any conditional probability p ∈ (0, 1) of the event {X = H}, we define the associated information type

$$\Theta(p) = \log \frac{(1-p)\nu}{(1-\nu)p}$$

 Result: Sharing information is additive in types. That is, whenever agents of types θ and φ meet, both become type θ + φ. This process is inductive over successive matching.

Setting for Information Percolation

Intuition: If the cross-sectional distribution of types is discrete, then the rate at which new agents of type θ are created is

$$2r\int \mu_t(heta-z)\mu_t(z)\,dz=2r(\mu_t*\mu_t)(heta)a.s.$$

This sort of application of the LLN for random matching is known as the Stosszahlansatz (Boltzmann), and has been shown rigorously only in discrete time (Duffie and Sun, *AAP*, 2007).

Solution for Cross-Sectional Distribution of Information

The Boltzmann equation for the cross-sectional distribution μ_t of types is, for λ = 2r,

$$\frac{d}{dt}\mu_t = -\lambda\,\mu_t + \lambda\,\mu_t * \mu_t. \tag{1}$$

- ▶ Standing assumption: On the event $\{X = H\}$, the first moment of μ_0 is strictly positive, and μ_0 has a moment generating function $z \mapsto \int e^{z\theta} \mu_0(d\theta)$ that is finite on a neighborhood of z = 0.
- Proposition (DGM, 2008). The unique solution of (1) is the Wild sum

$$\mu_t = \sum_{n \ge 1} e^{-\lambda t} (1 - e^{-\lambda t})^{n-1} \mu_0^{*n}.$$
 (2)

Sketch of Proof of Wild Sum

The ODE for the characteristic function $\varphi(\cdot, t)$ of μ_t ,

$$\frac{\partial \varphi(\mathbf{s}, t)}{\partial t} = -\lambda \varphi(\mathbf{s}, t) + \lambda \varphi^2(\mathbf{s}, t),$$

is solved by

$$\varphi(\mathbf{s},t) = \frac{\varphi(\mathbf{s},0)}{\mathbf{e}^{\lambda t}(1-\varphi(\mathbf{s},0))+\varphi(\mathbf{s},0)}.$$

This solution can be expanded as

$$\varphi(\mathbf{s},t) = \sum_{n\geq 1} e^{-\lambda t} (1-e^{-\lambda t})^{n-1} \varphi^n(\mathbf{s},t),$$

which is identical to the Fourier transform of the Wild sum (2).

Market Example

- Uninformed buyers of a contract promising X randomly select two informed sellers at intensity λ.
- A second-price auction allocates the trade to the lowest-bidding seller. (The Wallet Game.)
- In the unique symmetric equilibrium, sellers bid their posterior probabilities that X is high, revealing their types.

On the event $\{X = H\}$, the evolution of the cross-sectional population density of posterior probabilities of the event $\{X = H\}$.

Convergence Rate of Population Information

Let π_t be the cross-sectional distribution of posteriors at time *t*.

Definition: The rate of convergence of π_t to π_∞ is $\alpha > 0$ if there are constants κ_0 and κ_1 such that, for any *b* in (0, 1),

$$\mathbf{e}^{-lpha t}\kappa_0 \leq |\pi_t(\mathbf{0}, b) - \pi_\infty(\mathbf{0}, b)| \leq \mathbf{e}^{-lpha t}\kappa_1.$$

Proposition: π_t converges at rate λ to δ_0 on the event $\{X = L\}$ and to δ_1 on $\{X = H\}$.

Meetings of More than Two at a Time

- Groups of *m* agents are randomly matched. Because each agent is matched to others at rate *r*, the total annual quantity of attendance at meetings is λ = mr a.s.
- The associated Boltzmann equation for the type distribution is

$$\frac{d}{dt}\mu_t = -\lambda\mu_t + \lambda\,\mu_t^{*m}.$$

The solution is explicit as a Wild sum.

Wild Summation Solution

The unique solution of the Boltzmann equation for *m*-at-a-time matching is

$$\mu_t = \sum_{n \ge 1} a_{(m-1)(n-1)+1} e^{-\lambda t} (1 - e^{-(m-1)\lambda t})^{n-1} \mu_0^{*[(m-1)(n-1)+1]},$$

where $a_1 = 1$ and, for n > 1,

$$a_{(m-1)(n-1)+1} = \frac{1}{m-1} \left(1 - \sum_{\substack{\{i_1, \dots, i_{(m-1)} < n \\ \sum i_k = n+m-2}} \prod_{k=1}^{m-1} a_{(m-1)(i_k-1)+1} \right).$$

Invariance of Convergence Rate to Group Size for a Given Total Rate of Meeting Attendance

Proposition: For any group size *m*, the cross-sectional distribution π_t of posteriors converges at rate λ .

Malamud (2008) has extended this result to the case of groups of a random size.

Equilibrium Search Dynamics With Manso and Malamud

- Signals and X are joint Gaussian, with $corr(X, s_i) = \rho$.
- Agents arrive at a rate proportional to the population size, and leave at exponentially distributed times, pairwise independently.
- Agents meet others at a mean rate proportional to the rate at which they choose to expend search costs.
- > At entry, agent *i* receives N_{i0} signals, *iid* across agents.
- At exit, an agent chooses an action A, with cost $(X A)^2$.
- ► The optimal exit action is A = E(X | F_{it}), so the expected exit cost is the F_{it}-conditional variance of X,

$$\sigma_{it}^2 = v(N_{it}) \equiv \frac{1-
ho^2}{1+
ho^2(N_{it}-1)}.$$

Information Transmission

- Agent *i* has current mean $E(X | \mathcal{F}_{it})$ and "precision" N_{it} .
- When agents *i* and *j* meet, their posterior precisions become N_{it} + N_{jt}. Their posterior means are given by the usual precision-weighted average of their priors.
- At constant meeting intensity λ, the cross-sectional precision distribution μ_t thus behaves as before, except for the effect of arrivals and departures.

Search Technology

- Random matching (Stosszahlanzatz).
- Given current effort c by an agent, the mean rate of matching with someone from a unit mass of agents using search effort b is cb.
- ▶ The rate of cost of search effort *c* is K(c), for $c \in [c_L, c_H]$.

Separability of Posterior Precision and Mean

Proposition. For any search-effort policy function $C : \mathbb{N} \to [c_L, c_H]$, the cross-sectional density f_t of precisions and posterior means of the agents is almost surely given by

$$f_t(n, y, \omega) = \mu_t(n) p_n(y \mid X(\omega)),$$
(3)

where μ_t is the unique solution of the Boltzmann equation for the evolution of the cross-sectional distribution of information precision and $p_n(\cdot | X)$ is the *X*-conditional Gaussian density of $E(X | s_1, ..., s_n)$, for any *n* signals $s_1, ..., s_n$.

Stationary Measure

In a stationary setting with search policy \mathbf{C} , the precision distribution μ solves

$$\mathbf{0} = \eta(\gamma - \mu) + \mu^{\mathbf{C}} * \mu^{\mathbf{C}} - \mu^{\mathbf{C}} \mu^{\mathbf{C}}(\mathbb{N}),$$

where

- > η is the mean replacement rate of agents.
- γ is the distribution of N_{i0} .
- μ^{C} is the effort-weighted measure, with $\mu^{C}(n) = C(n)\mu(n)$.

Stationary Measure

Lemma. Given any policy *C*, there is a unique measure μ satisfying the stationary-measure equation.

This measure μ is characterized in the paper, and under technical conditions is the pointwise limit of μ_t , invariant to μ_0 .

Optimality and Equilibrium

Given a policy *C* for other agents, agent *i* has the value function $V(\cdot)$ defined by

$$V(N_{it}) = \operatorname{ess} \sup_{\phi} E\left(-e^{-r(\tau-t)}v(N_{i\tau}) - \int_{0}^{\tau} e^{-r(u-t)}K(\phi_{u}) du \mid \mathcal{F}_{it}\right),$$

which is characterized by the associated HJB equation.

The policy *C* is an equilibrium if $\phi_t^* = C(N_{it})$ is optimal.

Trigger Policies

A trigger policy C^N , for some integer $N \ge 1$, is defined by

$$\begin{array}{rcl} C_n^N & = & c_H, & n < N, \\ & = & c_L, & n \ge N. \end{array}$$

Information Sharing Opportunities

Proposition. Let μ^{M} and ν^{N} be the unique stationary measures corresponding to trigger policies C^{M} and C^{N} respectively. Let $\mu^{C,N}(n) = \mu^{N}(n)C^{N}(n)$ denote the associated search-effort-weighted measure. If N > M, then $\mu^{C,N}$ has first order stochastic dominance (FOSD) over $\mu^{C,M}$.

Information Sharing Opportunities

Proposition. Let μ^{M} and ν^{N} be the unique stationary measures corresponding to trigger policies C^{M} and C^{N} respectively. Let $\mu^{C,N}(n) = \mu^{N}(n)C^{N}(n)$ denote the associated search-effort-weighted measure. If N > M, then $\mu^{C,N}$ has first order stochastic dominance (FOSD) over $\mu^{C,M}$.

This comparison result need not hold for non-trigger policies!

There exist cases with $B \leq C$ but μ^B having FOSD over μ^C .

Optimal Effort is Decreasing in Precision

Proposition. Suppose that *K* is increasing, convex, and differentiable. Then, given any population behavior (μ, C) , the optimal search effort policy function is decreasing in precision.

Proposition. Suppose that $K(c) = \kappa c$ for some scalar $\kappa > 0$. Then, given (μ, C) , some a trigger policy C^N that is optimal for all agents.

Existence of Equilibrium

Theorem. Suppose that $K(c) = \kappa c$ for some scalar $\kappa > 0$. Then there exists a trigger policy that is an equilibrium.

The Equilibrium Impact of a Search Subsidy

- A tax τ is charged to each agent entering the market
- The proceeds are used to subsidize search so that the search cost is K_δ(c) = (κ − δ)c.

Proposition. If C^N is an equilibrium with subsidy δ , then for any $\delta' \geq \delta$, there exists some $N' \geq N$ such that $C^{N'}$ is an equilibrium with subsidy δ' .

Example

- 1. For some integer N > 1, $\gamma(0) = 1/2$, $\gamma(N) = 1/2$, and $c_L = 0$.
- It is possible to choose parameters so that, given market conditions (μ^N, C^N), agents slightly prefer policy C⁰ over C^N.
- We can choose the subsidy rate δ so that, given market conditions (μ^N, C^N), agents strictly prefer C^N to C⁰.
- 4. For sufficiently large *N* all agents have strictly higher indirect utility.

The Equilibrium Impact of Public Information

Agents are given $M \ge 1$ additional public signals at entry.

Proposition If C^N is an equilibrium with M public signals, then for any $M' \leq M$, there exists some $N' \geq N$ such that $C^{N'}$ is an equilibrium with M' public signals.

We provide examples with strict dominance.

Example

- 1. Suppose, for some integer N > 1, that $\pi_0 = 1/2$, $\pi_N = 1/2$, and $c_L = 0$.
- 2. Choose parameters so that, given market conditions (μ^N, C^N) agents are indifferent between policies C^N and C^0 .
- 3. Give each agent M = 1 public signal at entry.
- 4. All agents strictly prefer C^0 to C^N
- 5. For sufficiently large N all agents have strictly lower indirect utility.

Conclusion

- Model of social learning with endogenous search intensity.
- Social learning may slow down or even collapse:
 - coordination problems.
 - externality problems.
- Two policy interventions:
 - search subsidy.
 - education at entry.

Conclusion

- Model of social learning with endogenous search intensity.
- Social learning may slow down or even collapse:
 - coordination problems.
 - externality problems.
- Two policy interventions:
 - search subsidy.
 - education at entry.

Conclusion

- Model of social learning with endogenous search intensity.
- Social learning may slow down or even collapse:
 - coordination problems.
 - externality problems.
- Two policy interventions:
 - search subsidy.
 - education at entry.