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Information Percolation

◮ Markets
• Hayek (1945)
• Wolinsky (1990)
• Golosov, Lorenzoni, Tsyvinski (2008)

◮ Social learning
• Banerjee and Fudenberg (1995)
• Acemoglu (2008)
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Setting
From Duffie and Manso (AER 2007):

◮ A continuum of agents matched pairwise independently to other
agents at mean rate r .

◮ Payoff relevant states: X =

{

H with probability ν

L with probability 1 − ν

◮ Agent k is endowed with Sk = {s1, . . . , skn}, {0, 1}-signals that
are X -conditionally independent, with

P(si = 1 |X = H) ≥ P(si = 1 |X = L).

◮ For almost every pair j and k of agents, Sj and Sk are disjoint.

◮ If j and k are matched, they share endowed and previously
gathered signals.
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Information is Additive in Types

◮ For any conditional probability p ∈ (0, 1) of the event {X = H},
we define the associated information type

Θ(p) = log
(1 − p)ν

(1 − ν)p

◮ Result: Sharing information is additive in types. That is,
whenever agents of types θ and φ meet, both become type θ + φ.
This process is inductive over successive matching.
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Setting for Information Percolation

Intuition: If the cross-sectional distribution of types is discrete, then
the rate at which new agents of type θ are created is

2r
∫

µt (θ − z)µt(z) dz = 2r(µt ∗ µt )(θ)a.s.

This sort of application of the LLN for random matching is known as
the Stosszahlansatz (Boltzmann), and has been shown rigorously
only in discrete time (Duffie and Sun, AAP, 2007).
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Solution for Cross-Sectional Distribution of Information

◮ The Boltzmann equation for the cross-sectional distribution µt of
types is, for λ = 2r ,

d
dt

µt = −λµt + λµt ∗ µt . (1)

◮ Standing assumption: On the event {X = H}, the first
moment of µ0 is strictly positive, and µ0 has a moment
generating function z 7→

∫

ezθ µ0(dθ) that is finite on a
neighborhood of z = 0.

◮ Proposition (DGM, 2008). The unique solution of (1) is the Wild
sum

µt =
∑

n≥1

e−λt (1 − e−λt)n−1µ∗n
0 . (2)
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Sketch of Proof of Wild Sum

The ODE for the characteristic function ϕ( · , t) of µt ,

∂ϕ(s, t)
∂t

= −λϕ(s, t) + λϕ2(s, t),

is solved by

ϕ(s, t) =
ϕ(s, 0)

eλt(1 − ϕ(s, 0)) + ϕ(s, 0)
.

This solution can be expanded as

ϕ(s, t) =
∑

n≥1

e−λt (1 − e−λt )n−1ϕn(s, t),

which is identical to the Fourier transform of the Wild sum (2).
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Market Example

◮ Uninformed buyers of a contract promising X randomly select
two informed sellers at intensity λ.

◮ A second-price auction allocates the trade to the lowest-bidding
seller. (The Wallet Game.)

◮ In the unique symmetric equilibrium, sellers bid their posterior
probabilities that X is high, revealing their types.
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On the event {X = H}, the evolution of the cross-sectional population
density of posterior probabilities of the event {X = H}.
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Convergence Rate of Population Information

Let πt be the cross-sectional distribution of posteriors at time t.

Definition: The rate of convergence of πt to π∞ is α > 0 if there are
constants κ0 and κ1 such that, for any b in (0, 1),

e−αtκ0 ≤ |πt (0, b) − π∞(0, b)| ≤ e−αtκ1.

Proposition: πt converges at rate λ to δ0 on the event {X = L} and
to δ1 on {X = H}.
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Meetings of More than Two at a Time

◮ Groups of m agents are randomly matched. Because each agent
is matched to others at rate r , the total annual quantity of
attendance at meetings is λ = mr a.s.

◮ The associated Boltzmann equation for the type distribution is

d
dt

µt = −λµt + λµ∗m
t .

◮ The solution is explicit as a Wild sum.
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Wild Summation Solution

The unique solution of the Boltzmann equation for m-at-a-time
matching is

µt =
∑

n≥1

a(m−1)(n−1)+1e−λt (1 − e−(m−1)λt )n−1µ
∗[(m−1)(n−1)+1]
0 ,

where a1 = 1 and, for n > 1,

a(m−1)(n−1)+1 =
1

m − 1











1 −
∑

{

i1,...,i(m−1)<n
∑

ik =n+m−2

}

m−1
∏

k=1

a(m−1)(ik−1)+1











.
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Invariance of Convergence Rate to Group Size
for a Given Total Rate of Meeting Attendance

Proposition: For any group size m, the cross-sectional distribution
πt of posteriors converges at rate λ.

Malamud (2008) has extended this result to the case of groups of a
random size.
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Groups of 2 (blue) versus Groups of 3 (red)
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Equilibrium Search Dynamics
With Manso and Malamud

◮ Signals and X are joint Gaussian, with corr(X , si) = ρ.

◮ Agents arrive at a rate proportional to the population size, and
leave at exponentially distributed times, pairwise independently.

◮ Agents meet others at a mean rate proportional to the rate at
which they choose to expend search costs.

◮ At entry, agent i receives Ni0 signals, iid across agents.

◮ At exit, an agent chooses an action A, with cost (X − A)2.

◮ The optimal exit action is A = E(X | Fit), so the expected exit
cost is the Fit -conditional variance of X ,

σ2
it = v(Nit) ≡

1 − ρ2

1 + ρ2(Nit − 1)
.
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Information Transmission

◮ Agent i has current mean E(X | Fit) and “precision” Nit .

◮ When agents i and j meet, their posterior precisions become
Nit + Njt . Their posterior means are given by the usual
precision-weighted average of their priors.

◮ At constant meeting intensity λ, the cross-sectional precision
distribution µt thus behaves as before, except for the effect of
arrivals and departures.
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Search Technology

◮ Random matching (Stosszahlanzatz).

◮ Given current effort c by an agent, the mean rate of matching
with someone from a unit mass of agents using search effort b is
cb.

◮ The rate of cost of search effort c is K (c), for c ∈ [cL, cH ].
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Separability of Posterior Precision and Mean

Proposition. For any search-effort policy function C : N → [cL, cH ],
the cross-sectional density ft of precisions and posterior means of the
agents is almost surely given by

ft (n, y , ω) = µt(n) pn(y |X(ω)), (3)

where µt is the unique solution of the Boltzmann equation for the
evolution of the cross-sectional distribution of information precision
and pn( · |X) is the X -conditional Gaussian density of
E(X | s1, . . . , sn), for any n signals s1, . . . , sn.
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Stationary Measure

In a stationary setting with search policy C, the precision distribution
µ solves

0 = η(γ − µ) + µC ∗ µC − µC µC(N),

where
◮ η is the mean replacement rate of agents.
◮ γ is the distribution of Ni0.
◮ µC is the effort-weighted measure, with µC(n) = C(n)µ(n).
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Stationary Measure

Lemma. Given any policy C, there is a unique measure µ satisfying
the stationary-measure equation.

This measure µ is characterized in the paper, and under technical
conditions is the pointwise limit of µt , invariant to µ0.
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Optimality and Equilibrium

Given a policy C for other agents, agent i has the value function V ( · )
defined by

V (Nit ) = ess sup
φ

E
(

−e−r(τ−t)v(Niτ) −

∫ τ

0
e−r(u−t)K (φu) du

∣

∣

∣

∣

Fit

)

,

which is characterized by the associated HJB equation.

The policy C is an equilibrium if φ∗
t = C(Nit) is optimal.
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Trigger Policies

A trigger policy CN , for some integer N ≥ 1, is defined by

CN
n = cH , n < N,

= cL, n ≥ N.
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Information Sharing Opportunities

Proposition. Let µM and νN be the unique stationary measures
corresponding to trigger policies CM and CN respectively. Let
µC,N(n) = µN(n)CN (n) denote the associated search-effort-weighted
measure. If N > M, then µC,N has first order stochastic dominance
(FOSD) over µC,M .
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Information Sharing Opportunities

Proposition. Let µM and νN be the unique stationary measures
corresponding to trigger policies CM and CN respectively. Let
µC,N(n) = µN(n)CN (n) denote the associated search-effort-weighted
measure. If N > M, then µC,N has first order stochastic dominance
(FOSD) over µC,M .

This comparison result need not hold for non-trigger policies!

There exist cases with B ≤ C but µB having FOSD over µC .
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Optimal Effort is Decreasing in Precision

Proposition. Suppose that K is increasing, convex, and
differentiable. Then, given any population behavior (µ, C), the optimal
search effort policy function is decreasing in precision.

Proposition. Suppose that K (c) = κc for some scalar κ > 0. Then,
given (µ, C), some a trigger policy CN that is optimal for all agents.
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Existence of Equilibrium

Theorem. Suppose that K (c) = κc for some scalar κ > 0. Then
there exists a trigger policy that is an equilibrium.
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The Equilibrium Impact of a Search Subsidy

◮ A tax τ is charged to each agent entering the market

◮ The proceeds are used to subsidize search so that the search
cost is Kδ(c) = (κ − δ)c.

Proposition. If CN is an equilibrium with subsidy δ, then for any
δ′ ≥ δ, there exists some N ′ ≥ N such that CN′

is an equilibrium with
subsidy δ′.
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Example

1. For some integer N > 1, γ(0) = 1/2, γ(N) = 1/2, and cL = 0.

2. It is possible to choose parameters so that, given market
conditions (µN , CN), agents slightly prefer policy C0 over CN .

3. We can choose the subsidy rate δ so that, given market
conditions (µN , CN), agents strictly prefer CN to C0.

4. For sufficiently large N all agents have strictly higher indirect
utility.
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The Equilibrium Impact of Public Information

Agents are given M ≥ 1 additional public signals at entry.

Proposition If CN is an equilibrium with M public signals, then for any
M ′ ≤ M, there exists some N ′ ≥ N such that CN′

is an equilibrium
with M ′ public signals.

We provide examples with strict dominance.
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Example

1. Suppose, for some integer N > 1, that π0 = 1/2, πN = 1/2, and
cL = 0.

2. Choose parameters so that, given market conditions (µN , CN)
agents are indifferent between policies CN and C0.

3. Give each agent M = 1 public signal at entry.

4. All agents strictly prefer C0 to CN

5. For sufficiently large N all agents have strictly lower indirect utility.
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Conclusion

◮ Model of social learning with endogenous search intensity.

◮ Social learning may slow down or even collapse:
• coordination problems.

• externality problems.

◮ Two policy interventions:
• search subsidy.

• education at entry.
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