The Irrevocable Multi-Armed Bandit Problem

Ritesh Madan
Qualcomm-Flarion Technologies

May 27, 2009

Joint work with Vivek Farias (MIT)

Multi-Armed Bandit Problem

- n arms, where each arm i is a Markov Decision Process (MDP)
- state space \mathcal{S}_{i}
- action space \mathcal{A}_{i}
- reward function $r_{i}\left(s_{i}, a_{i}\right)$
- transition probability from s_{i} to s_{i}^{\prime} under action a_{i} is $P\left(s_{i}, a_{i}, s_{i}^{\prime}\right)$
- idle action ϕ_{i} with zero reward, unchanged state
- Constraint: k arms can be pulled at each time step.
- Goal: Maximize expected reward over a finite horizon, T
- Applications: call center staffing, fast fashion retailing, clinical drug trials

Example: Flipping Coins With Uncertain Bias

- n coins, each with uncertain bias $p_{i} \in[0,1]$, where p_{i} is $\operatorname{Pr}($ Heads $)$
- Can flip up to k coins at each time
- action space $\mathcal{A}_{i}=\{$ flip, $\phi\}$
- For every flip of coin i
- $\$ 1$ if heads, 0 if tails
- refine estimate of p_{i}
- When coin is not flipped, no reward and no refinement of estimate of bias
- Goal: Compute policy for flipping to maximize expected reward over T time steps.

Exploitation vs Exploration

- Tradeoff between exploiting a reliable coin and exploring another coin with potentially high reward.
- Assume a conjugate prior for a two-coin example below (e.g., BernoulliBeta learning model)

Coin 2

Whittle's Heuristic

- Subsidy for idling: Set $r_{i}\left(s_{i}, \phi_{i}\right)=\lambda$, for all s_{i}
- At time t, if arm is in state $s_{i}(t)$, compute minimum value of λ for this arm such that the optimal action in state $s_{i}(t)$ is to idle
- call this value $\eta_{i}\left(s_{i}(t)\right)$
- At time t, pull k arms with the highest $\eta_{i}\left(s_{i}(t)\right)$'s computed above
- Good performance on average, but lots of "churn"
- Example sample path for 5 binomial coins, 10 time steps, 2 pulls at each time shown below

t	0	1	2	3	4	5	6	7	8	9
$\operatorname{coin} 1$	1	3	5	1	4	1	3	5	5	5
$\operatorname{coin} 2$	2	4	2	3	5	2	4	2	3	4

Irrevocability: Fast Fashion Retailing

- Fast Fashion Retailing: Adjust assortment offered on sale at the store to quickly adapt to popular fashion trends
- Issues with Whittle's heuristic
- each new run introduces fixed cost
- if product is likely to come back, disincentive to buy now
- Constraint: Once a product is off the shelf, it won't come back, i.e., can pull an arm only if either
- the arm was pulled in the last time step, or
- the arm was never pulled in the past
- Questions:
- is irrevocability a tractable constraint?
- what is the price of irrevocability?

Key Results

- Packing heuristic for multi-armed bandit problem
- k arms pulled simultaneously
- reward earned by a single bandit depends on number of pulls, i.e., value is correlated with size
- A uniform bound on price of irrevocability for an interesting (large) class of bandits
- Computational experiments show that irrevocability can lead to loss of less than 10 to 20 percent in practice
- Construct a fast computational algorithm to compute packing heuristic
- faster than Whittle's heuristic

Prior Work: Stochastic Knapsack, Dean et al. [06]

- n items with values v_{1}, \ldots, v_{n} and unknown (random) sizes s_{1}, \ldots, s_{n} with known means
- Consider the following LP

$$
\max .\left\{\sum_{i} x_{i} v_{i}: \sum_{i} x_{i} \mathbb{E}\left[s_{i}\right] \leq t, x_{i} \in[0,1]\right\}
$$

- A solution is to set $x_{i}=1$ for bandits with highest $v_{i} / \mathbb{E}\left[s_{i}\right]$
- Greedy approximation algorithms based on placing items in (essentially) the following order:

$$
\frac{v_{1}}{\mathbb{E}\left[s_{1}\right]} \geq \ldots \geq \frac{v_{n}}{\mathbb{E}\left[s_{n}\right]}
$$

- Analysis relies critically on the fact that the value is independent of the size

Prior Work: Budgeted Learning, Guha and Munagala [07]

- n coins with uncertain reward
- Exploration: k arms can be played sequentially
- Exploitation: one arm is selected to be played forever
- design exploration strategy to maximize reward during exploitation
- Treat each bandit as an item in the knapsack
- value is expected reward if exploited
- two size constraints: cost, exploitation
- expected reward of arm is independent of length of exploration
- Policy based on LP where size constraints are met in expectation

Related Work: Index Based Policies, Goel et al. [08]

- Index based policy for budgeted learning that is within constant factor of optimal
- faster computation compared to Guha and Munagala
- index is constant factor approximation of Gittin's index (and vice versa) for appropriate discount factor
- Gittin's index obtains constant factor approximation for budgeted learning
- Extensions to finite horizon multi-armed bandit problem

LP Relaxation for Multi-Armed Bandit Problem

- Relax the problem by removing irrevocability constraint, and over time horizon T, allow

$$
\mathbb{E}(\text { total pulls })=k T
$$

- Problem becomes tractable LP

$$
\begin{array}{cl}
\text { maximize } & \sum_{i}\left(\text { expected reward for } i \text { under } \pi_{i}\right) \\
\text { subject to } & \sum_{i}\left(\text { expected pulls for } i \text { under } \pi_{i}\right) \leq k T \\
& \pi_{i} \in D_{i}
\end{array}
$$

where π_{i} is state-action frequency for arm i, constrained to be in a polytope of permissible state-action frequencies, D_{i}.

- Fast computation via dual later...

Packing Heuristic

- Each arm is an item of value $\mathbb{E}\left[R_{i}\right]$ and size $\mathbb{E}\left[T_{i}\right]$
- R_{i} is the (random) reward earned by arm i under policy π_{i}^{*}
- T_{i} is the (random) number of pulls for arm i under π_{i}^{*}
- Order arms as

$$
\frac{\mathbb{E}\left[R_{1}\right]}{\mathbb{E}\left[T_{1}\right]} \geq \frac{\mathbb{E}\left[R_{2}\right]}{\mathbb{E}\left[T_{2}\right]} \geq \ldots \geq \frac{\mathbb{E}\left[R_{n}\right]}{\mathbb{E}\left[T_{n}\right]}
$$

- Start with top k arms
- At each time t, pull or idle according to policy for given arm
- if arm is pulled, increment its local time, t_{i}, by one
- if arm is idled, increment time t_{i} for that arm until another pull action is found or $t_{i}=T$
- discard arm once $t_{i}=T$, replace with next highest ranked arm

Uniform Bound

- Correlation between pulls and reward satisfies decreasing returns property

$$
\mathbb{E}\left[R_{i}^{m+1}\right]-\mathbb{E}\left[R_{i}^{m}\right] \leq \mathbb{E}\left[R_{i}^{m}\right]-\mathbb{E}\left[R_{i}^{m-1}\right]
$$

where R_{i}^{m} is the reward earned by first m pulls of arm i under optimal policy π_{i}^{*} for arm i, for the relaxed LP.

- Above property satisfied by learning problems
- For bandits with decreasing returns property,

$$
J^{\mu_{\text {packing }}} \geq \frac{1}{8} J^{*}
$$

where J^{*} is optimal value of objective function of relaxed LP.

Proof Outline

- Define

$$
h=\min \left\{j: \sum_{i=1}^{j} E\left[T_{i}\right] \geq k T / 2\right\} \wedge \min \left\{i: \sum_{j=1}^{i} T_{j} \geq k T / 2\right\}
$$

- Show (using techniques similar to Dean et al., Guha \& Munagala)

$$
\mathbb{E}\left[\sum_{i=1}^{h} R_{i}\right] \geq \frac{1}{4} O P T\left(R L P\left(\tilde{\pi}_{0}\right)\right)
$$

- The first h bandit obtains expected reward of at least $\mathbb{E}\left[\sum_{i=1}^{h} R_{i}\right] / 2$
- decreasing rewards property
- a simple combinatorial lemma to show that each bandit $\leq h$ is pulled for at least $T / 2$ steps

Numerical Computation: Model

- Each bandit is modeled as a coin with unknown bias
- Bernoulli arrivals
- The prior for the coin is assumed to be a Beta distribution parameterized by (α, β)
- conjugate prior for Bernoulli arrivals
- mean number of arrivals per time slot is $\alpha /(\alpha+\beta)$
- Update:

$$
\alpha_{i}=\alpha_{i}+\mathbf{1}_{[\text {arrival }]}, \quad \beta_{i}=\beta_{i}+\mathbf{1}_{\text {[no arrival }]}
$$

- Coefficient of variation (CV) represents uncertainty in coin bias:

$$
c v=\frac{\sigma}{\mu}
$$

Performance

| Horizon
 (T) | Arms
 (n) | Pulls
 (k) | Performance: J^{μ} / J^{*}
 Packing | Whittle Irrev | Whittle | Whittle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |$|$| 40 | 501 | 125 | 0.91 | 0.80 | 0.92 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | 99 | 25 | 0.91 | 0.80 | 0.92 |
| 40 | 501 | 75 | 0.88 | 0.80 | 0.91 |
| 40 | 99 | 15 | 0.88 | 0.79 | 0.90 |
| 4055 | | | | | |

Equal number of bandits with cvs 1, 2.5, 4.

Fast Computation

- Solving relaxed LP via interior point methods is roughly $O(n T A \Sigma)^{3}$
- Σ states, A actions per arm
- We derive a computational algorithm with complexity $O\left(n A \Sigma^{2} \log (k T)\right)$ per time step
- compare with $O\left(T n A \Sigma^{2} \log (k T)\right)$ per time step for index based Whittle's heuristic
- Policy is essentially a randomization between two index policies
- indices computed only at start; no updates at each time step necessary

Dual Problem

- Consider the LP relaxation

$$
\begin{array}{cl}
\text { maximize } & \sum_{i} R_{i}\left(\pi_{i}\right) \\
\text { subject to } & \sum_{i} T_{i}\left(\pi_{i}\right) \leq k T \\
& \pi_{i} \in D_{i}
\end{array}
$$

- Dual problem given by

$$
\begin{aligned}
\operatorname{minimize} & \lambda k T+\sum \sum_{i} \max _{\pi_{i} \in D_{i}}\left(R\left(\pi_{i}\right)-\lambda T_{i}\left(\pi_{i}\right)\right), \\
\text { subject to } & \lambda \geq 0
\end{aligned}
$$

Dual Decomposition

Dual program is

$$
\begin{aligned}
\operatorname{minimize} & \lambda k T+\sum_{i} \max _{\pi_{i} \in D_{i}}\left(R\left(\pi_{i}\right)-\lambda T_{i}\left(\pi_{i}\right)\right), \\
\text { subject to } & \lambda \geq 0
\end{aligned}
$$

- Bisection algorithm to compute λ^{*}
- $\log (k T)$ iterations; at iteration k solve, for each arm i,

$$
\max _{\pi_{i} \in D_{i}}\left(R_{i}\left(\pi_{i}\right)-\lambda_{k} T_{i}\left(\pi_{i}\right)\right)
$$

- dynamic programming can be used for above computation, complexity of $O\left(A \Sigma^{2} T\right)$ for A actions, Σ states
- need bisection to converge to λ such that corresponding stateaction frequencies satisfy $\sum_{i} T_{i}\left(\pi_{i}\right) \approx k T$

Non Differentiable Dual

- Consider two bandits, $T=1$, one pull.

$$
\begin{aligned}
\operatorname{maximize} & R(p)=p_{1}+p_{2} \\
\text { subject to } & T(p)=p_{1}+p_{2} \leq 1
\end{aligned}
$$

- Dual function is

$$
\begin{aligned}
g(\lambda) & =\max _{p_{1}, p_{2}}(R(p)+\lambda(T(p)-1)) \\
& = \begin{cases}2-\lambda, & \lambda \leq 1 \\
\lambda, & \lambda>1\end{cases}
\end{aligned}
$$

- For $\lambda>1$, budget exceeded by one pull; for $\lambda<1$, zero pulls.

Primal Solution via Dual

An Optimal Policy: Linear Combination of Policies

- Consider

$$
\lambda_{1} \in\left(\lambda^{*}, \lambda^{*}+\epsilon\right] \quad \text { and } \quad \lambda_{2} \in\left[\lambda^{*}-\epsilon, \lambda^{*}\right]
$$

- $\pi(\lambda)=\arg \max _{\pi_{i} \in D_{i}}\left(R_{i}\left(\pi_{i}\right)-\lambda T_{i}\left(\pi_{i}\right)\right)$
- Consider a linear solution of corresponding optimal state action frequencies:

$$
\pi=\alpha \pi\left(\lambda_{1}\right)+(1-\alpha) \pi\left(\lambda_{2}\right)
$$

where $\alpha \in[0,1]$ is chosen such that

$$
k T=\alpha T\left(\lambda_{1}\right)+(1-\alpha) T\left(\lambda_{2}\right)
$$

- π is feasible, and the reward earned is guaranteed to be within 2ϵ of optimal.

Summary

- Designed an irrevocable packing heuristic which performs well in practice
- For bandits with decreasing rewards,
- uniform constant factor (1/8) approximation
- upper bound on price of irrevocability
- Derived a fast computational scheme to compute the packing heuristic

