
The Irrevocable Multi-Armed Bandit
Problem

Ritesh Madan
Qualcomm-Flarion Technologies

May 27, 2009

Joint work with Vivek Farias (MIT)



2

Multi-Armed Bandit Problem

• n arms, where each arm i is a Markov Decision Process (MDP)

- state space Si

- action space Ai

- reward function ri(si, ai)

- transition probability from si to s′i under action ai is P (si, ai, s
′
i)

- idle action φi with zero reward, unchanged state

• Constraint: k arms can be pulled at each time step.

• Goal: Maximize expected reward over a finite horizon, T

• Applications: call center staffing, fast fashion retailing, clinical drug
trials
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Example: Flipping Coins With Uncertain Bias

• n coins, each with uncertain bias pi ∈ [0, 1], where pi is Pr(Heads)

• Can flip up to k coins at each time

- action space Ai = {flip, φ}

• For every flip of coin i

- $1 if heads, 0 if tails

- refine estimate of pi

• When coin is not flipped, no reward and no refinement of estimate of
bias

• Goal: Compute policy for flipping to maximize expected reward over
T time steps.
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Exploitation vs Exploration

• Tradeoff between exploiting a reliable coin and exploring another coin
with potentially high reward.

• Assume a conjugate prior for a two-coin example below (e.g., Bernoulli-
Beta learning model)
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Whittle’s Heuristic

• Subsidy for idling: Set ri(si, φi) = λ, for all si

• At time t, if arm is in state si(t), compute minimum value of λ for
this arm such that the optimal action in state si(t) is to idle

- call this value ηi(si(t))

• At time t, pull k arms with the highest ηi(si(t))’s computed above

• Good performance on average, but lots of “churn”

- Example sample path for 5 binomial coins, 10 time steps, 2 pulls
at each time shown below

t 0 1 2 3 4 5 6 7 8 9
coin 1 1 3 5 1 4 1 3 5 5 5
coin 2 2 4 2 3 5 2 4 2 3 4
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Irrevocability: Fast Fashion Retailing

• Fast Fashion Retailing: Adjust assortment offered on sale at the store
to quickly adapt to popular fashion trends

• Issues with Whittle’s heuristic

- each new run introduces fixed cost

- if product is likely to come back, disincentive to buy now

• Constraint: Once a product is off the shelf, it won’t come back, i.e.,
can pull an arm only if either

- the arm was pulled in the last time step, or

- the arm was never pulled in the past

• Questions:

- is irrevocability a tractable constraint?

- what is the price of irrevocability?
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Key Results

• Packing heuristic for multi-armed bandit problem

- k arms pulled simultaneously

- reward earned by a single bandit depends on number of pulls, i.e.,
value is correlated with size

• A uniform bound on price of irrevocability for an interesting (large)
class of bandits

• Computational experiments show that irrevocability can lead to loss
of less than 10 to 20 percent in practice

• Construct a fast computational algorithm to compute packing heuristic

- faster than Whittle’s heuristic
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Prior Work: Stochastic Knapsack, Dean et al. [06]

• n items with values v1, . . . , vn and unknown (random) sizes s1, . . . , sn

with known means

• Consider the following LP

max.

∑
i

xivi :
∑

i

xiE[si] ≤ t, xi ∈ [0, 1]


- A solution is to set xi = 1 for bandits with highest vi/E[si]

- Greedy approximation algorithms based on placing items in (es-
sentially) the following order:

v1

E[s1]
≥ . . . ≥ vn

E[sn]

• Analysis relies critically on the fact that the value is independent of
the size
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Prior Work: Budgeted Learning, Guha and Munagala [07]

• n coins with uncertain reward

- Exploration: k arms can be played sequentially

- Exploitation: one arm is selected to be played forever

- design exploration strategy to maximize reward during exploita-
tion

• Treat each bandit as an item in the knapsack

- value is expected reward if exploited

- two size constraints: cost, exploitation

- expected reward of arm is independent of length of exploration

• Policy based on LP where size constraints are met in expectation
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Related Work: Index Based Policies, Goel et al. [08]

• Index based policy for budgeted learning that is within constant factor
of optimal

- faster computation compared to Guha and Munagala

- index is constant factor approximation of Gittin’s index (and vice
versa) for appropriate discount factor

- Gittin’s index obtains constant factor approximation for budgeted
learning

• Extensions to finite horizon multi-armed bandit problem
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LP Relaxation for Multi-Armed Bandit Problem

• Relax the problem by removing irrevocability constraint, and over time
horizon T , allow

E(total pulls) = kT

• Problem becomes tractable LP

maximize
∑

i

(expected reward for i under πi)

subject to
∑

i

(expected pulls for i under πi) ≤ kT

πi ∈ Di

where πi is state-action frequency for arm i, constrained to be in a
polytope of permissible state-action frequencies, Di.

• Fast computation via dual later...
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Packing Heuristic

• Each arm is an item of value E[Ri] and size E[Ti]

- Ri is the (random) reward earned by arm i under policy π∗i
- Ti is the (random) number of pulls for arm i under π∗i

• Order arms as
E[R1]

E[T1]
≥ E[R2]

E[T2]
≥ ... ≥ E[Rn]

E[Tn]

• Start with top k arms

• At each time t, pull or idle according to policy for given arm

- if arm is pulled, increment its local time, ti, by one

- if arm is idled, increment time ti for that arm until another pull
action is found or ti = T

- discard arm once ti = T , replace with next highest ranked arm
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Uniform Bound

• Correlation between pulls and reward satisfies decreasing returns prop-
erty

E[Rm+1
i ]− E[Rm

i ] ≤ E[Rm
i ]− E[Rm−1

i ]

where Rm
i is the reward earned by first m pulls of arm i under optimal

policy π∗i for arm i, for the relaxed LP.

• Above property satisfied by learning problems

• For bandits with decreasing returns property,

Jµpacking ≥ 1

8
J∗

where J∗ is optimal value of objective function of relaxed LP.
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Proof Outline

• Define

h = min

j :

j∑
i=1

E[Ti] ≥ kT/2

 ∧min

i :

i∑
j=1

Tj ≥ kT/2


• Show (using techniques similar to Dean et al., Guha & Munagala)

E

 h∑
i=1

Ri

 ≥ 1

4
OPT (RLP (π̃0))

• The first h bandit obtains expected reward of at least E
[∑h

i=1 Ri

]
/2

- decreasing rewards property

- a simple combinatorial lemma to show that each bandit ≤ h is
pulled for at least T/2 steps
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Numerical Computation: Model

• Each bandit is modeled as a coin with unknown bias

- Bernoulli arrivals

• The prior for the coin is assumed to be a Beta distribution parameter-
ized by (α, β)

- conjugate prior for Bernoulli arrivals

- mean number of arrivals per time slot is α/(α + β)

• Update:

αi = αi + 1[arrival], βi = βi + 1[no arrival]

• Coefficient of variation (CV) represents uncertainty in coin bias:

cv =
σ

µ
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Performance

Horizon Arms Pulls Performance: Jµ/J∗ Revocations
(T ) (n) (k) Packing Whittle Irrev Whittle Whittle

40 501 125 0.91 0.80 0.92 1983

40 99 25 0.91 0.80 0.92 389

40 501 75 0.88 0.80 0.91 1055

40 99 15 0.88 0.79 0.90 214

Equal number of bandits with cvs 1, 2.5, 4.
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Fast Computation

• Solving relaxed LP via interior point methods is roughly O(nTAΣ)3

- Σ states, A actions per arm

• We derive a computational algorithm with complexity O(nAΣ2 log(kT ))
per time step

- compare with O(TnAΣ2 log(kT )) per time step for index based
Whittle’s heuristic

• Policy is essentially a randomization between two index policies

- indices computed only at start; no updates at each time step
necessary
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Dual Problem

• Consider the LP relaxation

maximize
∑

i

Ri(πi)

subject to
∑

i

Ti(πi) ≤ kT

πi ∈ Di

• Dual problem given by

minimize λkT +
∑

i

max
πi∈Di

(R(πi)− λTi(πi)),

subject to λ ≥ 0
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Dual Decomposition

Dual program is

minimize λkT +
∑

i

max
πi∈Di

(R(πi)− λTi(πi)),

subject to λ ≥ 0

• Bisection algorithm to compute λ∗

- log(kT ) iterations; at iteration k solve, for each arm i,

maxπi∈Di
(Ri(πi)− λkTi(πi))

- dynamic programming can be used for above computation, com-
plexity of O(AΣ2T ) for A actions, Σ states

- need bisection to converge to λ such that corresponding state-
action frequencies satisfy

∑
i Ti(πi) ≈ kT
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Non Differentiable Dual

• Consider two bandits, T = 1, one pull.

maximize R(p) = p1 + p2

subject to T (p) = p1 + p2 ≤ 1

• Dual function is

g(λ) = max
p1,p2

(R(p) + λ(T (p)− 1))

=

{
2− λ , λ ≤ 1
λ , λ > 1

• For λ > 1, budget exceeded by one pull; for λ < 1, zero pulls.
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Primal Solution via Dual
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An Optimal Policy: Linear Combination of Policies

• Consider

λ1 ∈ (λ∗, λ∗ + ε] and λ2 ∈ [λ∗ − ε, λ∗]

• π(λ) = arg maxπi∈Di
(Ri(πi)− λTi(πi))

• Consider a linear solution of corresponding optimal state action fre-
quencies:

π = απ(λ1) + (1− α)π(λ2)

where α ∈ [0, 1] is chosen such that

kT = αT (λ1) + (1− α)T (λ2)

• π is feasible, and the reward earned is guaranteed to be within 2ε of
optimal.
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Summary

• Designed an irrevocable packing heuristic which performs well in prac-
tice

• For bandits with decreasing rewards,

- uniform constant factor (1/8) approximation

- upper bound on price of irrevocability

• Derived a fast computational scheme to compute the packing heuristic


