
1

Algorithms and Heuristics for Deployment of
Sensors (“Guards”) for Optimal Coverage

Joe Mitchell

Work joint with Y. Amit, A. Efrat, M. Irfan, J. Iwerks, J. Kim, E. Packer

2

Stationary Guards

3

The Art Gallery Problem

Determine a small set of “guards” to see all of a given

n-vertex polygon P

Art Gallery Thm: guards

suffice and are sometimes necessary

NP-hard, even in simple polygon

Motivation: Sensor coverage, security

g(P) = min # guards

4

Experimental Investigation [Amit, M, Packer]

• Propose several heuristics for computing guards

• Experimental analysis and comparison

• Compute both upper bounds and lower bounds on
OPT, so we can bound how close to OPT we get

• Conclude: heuristics work well in practice:
• Either find OPT solution or close to optimal
• Almost always 2-approx

(always for “random” polygons)

5

Related Work

•Combinatorics: Lots!

•Approximation algorithms for discrete candidate sets
(vertex guards, grid-point guards, etc):

•O(log n)-approx: set cover (greedy) [G87]
•O(log k)-approx: reweighting ([Cl,BG]) [EH03,GL01]
•O(1)-approx in special cases:

•1.5D terrains (best: 4-approx) [BKM05,K06,EKMMS08]
•Monotone polygons [Ni05]

•Pseudo-poly O(log k)-approx (poly in spread, n) [DKDS07]

•Exact poly-time solutions:
•Rectangle visibility in rectilinear polygons [WK06]
•Partitioning P into min # star-shaped pieces [Ke85]
•Min-length watchman tour (mobile guard) [CN86]

•Other recent experiments
•Experiments with (exp-time) combinatorial algorithm for
guarding the boundary of P [BL06]

Art Gallery Thm: guards

suffice and are sometimes necessary

6

Greedy Heuristics

• Two phases:
•Generate a set of good candidate guard
positions
•Greedily select a subset of candidates that
fully cover P

•Algorithm design choices:
•How to specify the set of candidates?
•How to score candidates for greedy selection?

7

Phase 1: Generating Candidates

1. Use set V(P) = vertices of polygon P

2. Centers C(P) of convex cells in an arrangement:
• Edge extensions [size O(n2)]

• Visibility extensions [size O(n4)]

3. V(P)  C(P)

(actually used points perturbed interior to P)

(VG edges incident on at least 1 reflex vertex)

8

Example

Centers of cells in arrangement of edge extensions

Visibility extensions for VG edge (u,v)

u

v

9

Phase 2: Greedily Selecting Candidates

• Set of candidates: W(P)

• Greedily add “good” candidates g  W(P)
until P is covered: Max m(g) g  W(P)

• At end, iteratively remove redundant
guards until set is minimal

10

• A1 :

• A2 :
Variant: With each guard g chosen, add to

arrangement the visibility edges V(g) induced by g

Heuristics Used in Experimentation

Candidates W(P) = V(P)  C(P)

Score m(g) = # unseen candidates
Arrangement: Edge extensions

Vertices and center points in arr

Blue: added edges

11

A3 :
A4 :
A5 :
A6 :
A7 :
A8 :
A9 :
A10 :
A11 :
A12 :

Heuristics Used in Experimentation

Like A1 but: Score m(g) = area newly seen

Like A1 but: m(g) weighted by cell area

Like A4 but: m(g) weighted by shared bd(P)

Like A4 but: m(g) weighted by % of shared bd(P)

Like A1 but: Candidates W(P) = V(P)

Like A1 but: Candidates W(P) = C(P)

Like A1 but: m(g) = # newly seen vertices

Like A1 but: m(g) = # newly seen cell centers

Like A1 but: Arrangement of visibility extensions

Combination of A2 and A11

(dynamically added edges, arr of visibility extensions)

12

Method: A13 : Probabilistic Reweighting

We also implemented an algorithm based on the
Clarkson/Bronnimann-Goodrich framework: [EH03,GL01]

Each candidate is assigned a weight : probability it is selected

Initially: All weights = 1

Iteration: A candidate is selected at random

If there is an unguarded point, q, then the weights of candidates
that see q are doubled (improve chances q is guarded on future iterations)

Continue until all points of P are guarded

13

Method: A14 : Polygon Partition

We also implemented an algorithm based on partitioning P
into star-shaped pieces

(Note: min-size partition into star-shaped polygons is poly-time, using DP)

We use a simple heuristic similar to Hertel-Mehlhorn 4-approx
for min-cardinality convex partition:

• Triangulate P

• Remove diagonals iteratively, never allowing a non-star-
shaped piece to be created.

• Place one guard per piece

Not competitive
with other methods

(most cases)

Particularly poor on
“spike box” examples

14

Example: A14 : Polygon Partition

kernels in green

15

Lower Bounds on OPT

Lemma: g(P)  |I|, for any visibility-independent set I

of points in P

g(P)  4

16

Lower Bounds on OPT

We greedily compute a visibility-independent set I:

• Generate candidate set S (not vis-indep)

• Add points pS iteratively to I, minimizing # points of S
seen by p, making sure that VP(p) is disjoint from VP(q),
for qI

(We use CGAL arrangements to maintain VP’s and test vis-independence)

• Remove from S points seen by p

• Stop when S is empty

17

Lower Bounds on OPT

Most cases: p  bd(P) sees less

Moving away from a convex
vertex tends to see more

Moving away from a reflex
vertex tends to see less

Heuristic: Candidates S are convex vertices and
midpoints of edges of P joining two reflex vertices

18

Experimental Setup

• Windows XP, Pentium 4 (3.2GHz, 2.0GB)

• Visual .Net compiler; openGL; CGAL

• Randomly generated polygons:

• RPG of Auer and Held, 50-200 vertices

• Manually generated special polygons

19

Robust computation of cells

With exact arithmetic Possible error with floating-point Solution: push extensions

20

Examples: n=100

A1 A2 A11

21

A1 A2 A11

Examples: n=100

22

More Examples

Spike box

A1

23

More Examples

A1

24

More Examples

A1

25

K - average excess = number of guards more than the
min guard number over all heuristics

M – average relative excess (relative to min)

Q - number of times (out of 40) the guarding obtained with
the heuristic was the best among all heuristics

B - number of completed tests

Comparison of Heuristics

Results on 40 polygons:

26

Comparison of Heuristics

LB
2
2
4
11
2
2
5
8
3
2
2
7
5
1
5
4
5
4
11
12
13
9
13
14
14
13
11
12
1
1
2

27

Comparison of Heuristics

28

Comparison of Heuristics

29

Number of Guards vs. Number of Vertices

A1

A2

A11

30

Early Termination: Partial Covering

Total fraction of P covered as the
number of guards varies from the

lower bound, |I|, to the full
coverage number of guards

Most cases: 80% is covered
using |I| guards

31

Conclusion

• Extensions:
•Visibility constraints (view distance, good view
angles, robust coverage)
•Terrain coverage (2.5D)
•3D

•Open:
•Any approx algorithm (better than n/3-approx)
for unrestricted guards
•O(1)-approx for vertex/grid guarding simple
polygons
•Characterization of polygons for which our
heuristics perform well (provably well)?

32

Robust Guards

Issue: Even if we computed exactly a minimum cardinality set of
guards, could we know with confidence the domain is really
guarded?

Guards may not be placed exactly. (Human guards don’t usually
stand exactly still, and cameras/sensors cannot be placed
perfectly.)

Model: When a guard is
placed at p, it will actually
reside at some point within a
disk, Be(p), of radius e

p

q

In order for q to be “seen” by
guard p, it must be able to see
the guard no matter where it is
within the disk Be(p)

Bounded radius, R, of vision

R

33

Theorem: There is a PTAS for computing a min # of robust, radius-
bounded guards in a polygonal domain (with holes), assuming R/e is
bounded, and a poly-size set G of candidate guard locations is given.

Robust Guards: New Approx Bound

One option for G: use a set L of O(l log2 l)
landmarks, as in [AEG08], and then guarantee at
least (1-e1)-fraction of the area is seen.

l = (gopt /e1) log h (h = # holes)

[AEG08] also give randomized greedy
algorithm that, whp, computes O(gL log l)
guards to cover L, where gL ≤ gopt is opt # of
guards to cover L

Method: m-guillotine optimization: Convert any OPT to an m-guillotine
version; apply DP to optimize

34

Suffices: Visible regions, VP(g), from candidate guard locations gG have
area(VP(g)) ≥ c diam2(VP(g)), for some c. (e.g., each VP(g) contains a disk
of radius Ω(diam(VP(g)))

What is Needed for PTAS to Apply

Another Sufficient Model:
Sample points S in P.
Guards placed at subset of S.
Guards must see all of S: Problem is Dominating Set in VG(S)

If samples S are d-well dispersed (e.g., no disk of radius d has more than
O(1) samples of S), and guards have visibility radius R, with R/d bounded,
then PTAS also applies

Minimum Dominating Set:
best approx in general is log-approx
PTAS for planar graphs, UDG
APX-complete for degree-B, B≥3

Here, the graph VG(S) is not planar, not UDG, but has
bounded degree, depending on R/d

Special Case: Bounded
radius visibility in
polyominoes

35

Guarding Polyominoes

• Polyomino: simply connected
union of m integral unit squares
(pixels) – “pixel polygon”

• Models of pixel guards:
(1) Point guards
(2) Pixel guards
(3) Robust (pixel) guards:

Strong visibility: only
those points that are seen
from any point within the
pixel are seen

[Irfan, Iwerks, Kim, M]

Art Gallery Thm:

(1) ceil((m-1)/3) point guards suffice and are sometimes
necessary

(2) ceil((m-1)/3) pixel guards suffice and ceil((m-1)/4) are
sometimes necessary

(3) floor(m/2) robust guards suffice and are sometimes
necessary: Simple coloring argument: 2-color the grid
of pixels.

NP-hardness: Computing the guard number in
polyominoes is NP-hard

Guarding Polyominoes

Point Guards

Pixel Guards

Robust Pixel Guards

OPEN: Close
the gap!

37

Examples of pentominoes

Each requires just
one point guard,
except 5* and 5**

38

Point Guards in Polyominoes

Actually, ceil((m-1)/3)

39

Claim: Any hexomino (m=6) can be guarded with 1 or 2 points.

40

Claim: Any heptomino (m=7) can be guarded with 1 or 2 points.

41

Partitioning octominoes

42

Mobile Guards

Find a shortest tour
for a guard to be
able to see all of
the domain

Watchman Route Problem

 Closely related to TSPN: visit VP(p), for
all p in P

 Poly-time in simple polygons [CN,DELM]

Best time bound: O(n3 log n) [DELM]

 NP-hard in polygons with holes

 No approx algorithm known in general!

 Rectilinear visibility: O(log n)-approx [MM’95]

 NEW: For fat obstacles, PTAS to see at least
one point on the boundary of each obstacle

 3D: Depends on 3D TSPN [ADDFM]

Watchman Route Problems

Q: Approx for planar
domain, standard visibility?

Q: Approx for guard on
a terrain surface?

Find shortest tour to visit a set of
neighborhoods P1,P2,…,Pn

TSPN: TSP with Neighborhoods

Recent result: Can apply also to yield PTAS
for watchman route among fat obstacles

Forest

Trees

Watchman: How to
“See the Forest for the Trees”

NP-hard

Fat obstacles: Prove m-guillotine PTAS applies to geodesic metric

Region-Bridges

M=3

Bridges

m = 4

TSPN Subproblem: A Window into OPT

48

TSPN with Obstacles: Key Issue

Bridge (as in m-guillotine method)

Obstacle

Detour (needed to keep the Bridge
connected)

Sufficient: Obstacles are fat : then the
detours to keep bridge connected cause
only a constant-factor dilation to bridge
length, which is charged off

Either: (1) limited view distance

Forest Assumptions

p

Require robot to get within distance R of a point p in order to see it

Or: (2) forest is dense enough (e.g.,
maximal packing) so that the visibility
region from a point deep inside the forest
is a fat (star-shaped) region.

Forest Assumptions

p

Radius R

Related to Polya’s Orchard Problem Olber’s paradox [1826]

r

Dark if tree radius > 1/r

Recently shown!: R < const
[Dumitrescu and Jiang, 2009]

Time: O(nO(R))

Dark Forest Conjecture:
For R < const, there exists a
dark point p

R < 2*10108

