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2

Stationary Guards
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The Art Gallery Problem

Determine a small set of “guards” to see all of a given

n-vertex polygon P

Art Gallery Thm:             guards 

suffice and are sometimes necessary

NP-hard, even in simple polygon

Motivation: Sensor coverage, security

g(P) = min # guards
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Experimental Investigation  [Amit, M, Packer]

• Propose several heuristics for computing guards

• Experimental analysis and comparison

• Compute both upper bounds and lower bounds on 
OPT, so we can bound how close to OPT we get

• Conclude: heuristics work well in practice: 
• Either find OPT solution or close to optimal
• Almost always 2-approx 

(always for “random” polygons)
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Related Work

•Combinatorics: Lots!

•Approximation algorithms for discrete candidate sets 
(vertex guards, grid-point guards, etc):

•O(log n)-approx:  set cover (greedy)   [G87]
•O(log k)-approx: reweighting ([Cl,BG]) [EH03,GL01]
•O(1)-approx in special cases:

•1.5D terrains (best: 4-approx) [BKM05,K06,EKMMS08]
•Monotone polygons [Ni05]

•Pseudo-poly O(log k)-approx (poly in spread, n) [DKDS07]

•Exact poly-time solutions:
•Rectangle visibility in rectilinear polygons [WK06]
•Partitioning P into min # star-shaped pieces [Ke85]
•Min-length watchman tour (mobile guard) [CN86]

•Other recent experiments
•Experiments with (exp-time) combinatorial algorithm for 
guarding the boundary of P [BL06]

Art Gallery Thm:             guards 

suffice and are sometimes necessary
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Greedy Heuristics

• Two phases:
•Generate a set of good candidate guard 
positions
•Greedily select a subset of candidates that 
fully cover P

•Algorithm design choices:
•How to specify the set of candidates?
•How to score candidates for greedy selection?



7

Phase 1: Generating Candidates

1. Use set V(P) = vertices of polygon P

2. Centers C(P) of convex cells in an arrangement:
• Edge extensions  [ size O(n2) ]

• Visibility extensions  [ size O(n4) ]

3. V(P)  C(P)

(actually used points perturbed interior to P)

(VG edges incident on at least 1 reflex vertex)
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Example

Centers of cells in arrangement of edge extensions

Visibility extensions for VG edge (u,v)

u

v
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Phase 2: Greedily Selecting Candidates

• Set of candidates:  W(P)

• Greedily add “good” candidates g  W(P)
until P is covered:  Max m(g)      g  W(P)

• At end, iteratively remove redundant 
guards until set is minimal
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• A1 :

• A2 : 
Variant: With each guard g chosen, add to 

arrangement the visibility edges V(g) induced by g

Heuristics Used in Experimentation

Candidates W(P) = V(P)  C(P)

Score m(g) = # unseen candidates
Arrangement: Edge extensions

Vertices and center points in arr

Blue: added edges
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A3 :
A4 : 
A5 :
A6 :
A7 :
A8 :
A9 :
A10 :
A11 :
A12 :

Heuristics Used in Experimentation

Like A1 but: Score m(g) = area newly seen

Like A1 but: m(g) weighted by cell area

Like A4 but: m(g) weighted by shared bd(P)

Like A4 but: m(g) weighted by % of shared bd(P)

Like A1 but: Candidates W(P) = V(P)

Like A1 but: Candidates W(P) = C(P)

Like A1 but: m(g) = # newly seen vertices

Like A1 but: m(g) = # newly seen cell centers

Like A1 but: Arrangement of visibility extensions

Combination of A2 and A11

(dynamically added edges, arr of visibility extensions)
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Method: A13 : Probabilistic Reweighting

We also implemented an algorithm based on the 
Clarkson/Bronnimann-Goodrich framework: [EH03,GL01]

Each candidate is assigned a weight : probability it is selected

Initially:  All weights = 1

Iteration:  A candidate is selected at random

If there is an unguarded point, q, then the weights of candidates 
that see q are doubled  (improve chances q is guarded on future iterations)

Continue until all points of P are guarded



13

Method: A14 : Polygon Partition

We also implemented an algorithm based on partitioning P
into star-shaped pieces

(Note: min-size partition into star-shaped polygons is poly-time, using DP)

We use a simple heuristic similar to Hertel-Mehlhorn 4-approx 
for min-cardinality convex partition:

• Triangulate P

• Remove diagonals iteratively, never allowing a non-star-
shaped piece to be created.

• Place one guard per piece

Not competitive 
with other methods

(most cases)

Particularly poor on 
“spike box” examples
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Example: A14 : Polygon Partition

kernels in green
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Lower Bounds on OPT

Lemma: g(P)  |I|, for any visibility-independent set I

of points in P

g(P)  4
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Lower Bounds on OPT

We greedily compute a visibility-independent set I:

• Generate candidate set S (not vis-indep)

• Add points pS iteratively to I, minimizing # points of S
seen by p, making sure that VP(p) is disjoint from VP(q),
for qI

(We use CGAL arrangements to maintain VP’s and test vis-independence)

• Remove from S points seen by p

• Stop when S is empty
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Lower Bounds on OPT

Most cases: p  bd(P) sees less

Moving away from a convex 
vertex tends to see more

Moving away from a reflex 
vertex tends to see less

Heuristic: Candidates S are convex vertices and 
midpoints of edges of P joining two reflex vertices
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Experimental Setup

• Windows XP, Pentium 4 (3.2GHz, 2.0GB)

• Visual .Net compiler; openGL; CGAL

• Randomly generated polygons:

• RPG of Auer and Held, 50-200 vertices

• Manually generated special polygons
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Robust computation of cells

With exact arithmetic Possible error with floating-point Solution: push extensions 
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Examples: n=100

A1 A2 A11
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A1 A2 A11

Examples: n=100
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More Examples

Spike box

A1
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More Examples

A1
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More Examples

A1
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K - average excess = number of guards more than the
min guard number over all heuristics

M – average relative excess (relative to min)

Q - number of times (out of 40) the guarding obtained with
the heuristic was the best among all heuristics

B - number of completed tests

Comparison of Heuristics

Results on 40 polygons:
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Comparison of Heuristics
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Comparison of Heuristics
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Comparison of Heuristics
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Number of Guards vs. Number of Vertices

A1

A2

A11
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Early Termination: Partial Covering

Total fraction of P covered as the 
number of guards varies from the 

lower bound, |I|, to the full
coverage number of guards

Most cases:  80% is covered 
using |I| guards
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Conclusion

• Extensions:
•Visibility constraints (view distance, good view 
angles, robust coverage)
•Terrain coverage (2.5D)
•3D

•Open: 
•Any approx algorithm (better than n/3-approx) 
for unrestricted guards
•O(1)-approx for vertex/grid guarding simple 
polygons
•Characterization of polygons for which our 
heuristics perform well (provably well)?
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Robust Guards

Issue: Even if we computed exactly a minimum cardinality set of 
guards, could we know with confidence the domain is really 
guarded?

Guards may not be placed exactly.  (Human guards don’t usually 
stand exactly still, and cameras/sensors cannot be placed 
perfectly.)

Model:  When a guard is 
placed at p, it will actually 
reside at some point within a 
disk, Be(p), of radius e

p

q

In order for q to be “seen” by 
guard p, it must be able to see 
the guard no matter where it is 
within the disk Be(p)

Bounded radius, R, of vision

R
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Theorem:  There is a PTAS for computing a min # of robust, radius-
bounded guards in a polygonal domain (with holes), assuming R/e is 
bounded, and a poly-size set G of candidate guard locations is given.

Robust Guards: New Approx Bound

One option for G: use a set L of O(l log2 l) 
landmarks, as in [AEG08], and then guarantee at 
least (1-e1)-fraction of the area is seen.

l = (gopt /e1) log h          (h = # holes)

[AEG08] also give randomized greedy 
algorithm that, whp, computes O(gL log l) 
guards to cover L, where gL ≤ gopt is opt # of 
guards to cover L

Method:  m-guillotine optimization:  Convert any OPT to an m-guillotine 
version; apply DP to optimize
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Suffices:  Visible regions, VP(g), from candidate guard locations gG have 
area(VP(g)) ≥ c diam2(VP(g)), for some c.  (e.g., each VP(g) contains a disk 
of radius Ω(diam(VP(g)) )

What is Needed for PTAS to Apply

Another Sufficient Model:  
Sample points S in P.
Guards placed at subset of S.
Guards must see all of S:  Problem is Dominating Set in VG(S)

If samples S are d-well dispersed (e.g., no disk of radius d has more than 
O(1) samples of S), and guards have visibility radius R, with R/d bounded, 
then PTAS also applies

Minimum Dominating Set:
best approx in general is log-approx
PTAS for planar graphs, UDG
APX-complete for degree-B, B≥3

Here, the graph VG(S) is not planar, not UDG, but has 
bounded degree, depending on R/d

Special Case: Bounded 
radius visibility in 
polyominoes
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Guarding Polyominoes

• Polyomino: simply connected 
union of m integral unit squares 
(pixels) – “pixel polygon”

• Models of pixel guards:
(1) Point guards
(2) Pixel guards
(3) Robust (pixel) guards:

Strong visibility: only 
those points that are seen 
from any point within the 
pixel are seen

[Irfan, Iwerks, Kim, M]



Art Gallery Thm: 

(1) ceil((m-1)/3) point guards suffice and are sometimes 
necessary

(2) ceil((m-1)/3) pixel guards suffice and ceil((m-1)/4) are 
sometimes necessary

(3) floor(m/2) robust guards suffice and are sometimes 
necessary: Simple coloring argument: 2-color the grid 
of pixels. 

NP-hardness:  Computing the guard number in 
polyominoes is NP-hard 

Guarding Polyominoes

Point Guards

Pixel Guards

Robust Pixel Guards

OPEN: Close 
the gap!
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Examples of pentominoes

Each requires just 
one point guard, 
except 5* and 5**
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Point Guards in Polyominoes

Actually, ceil((m-1)/3)
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Claim: Any hexomino (m=6) can be guarded with 1 or 2 points.
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Claim: Any heptomino (m=7) can be guarded with 1 or 2 points.
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Partitioning octominoes
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Mobile Guards



Find a shortest tour 
for a guard to be 
able to see all of 
the domain

Watchman Route Problem



 Closely related to TSPN: visit VP(p), for 
all p in P

 Poly-time in simple polygons   [CN,DELM]

Best time bound: O(n3 log n) [DELM]

 NP-hard in polygons with holes

 No approx algorithm known in general!

 Rectilinear visibility: O(log n)-approx   [MM’95]

 NEW: For fat obstacles, PTAS to see at least 
one point on the boundary of each obstacle

 3D: Depends on 3D TSPN   [ADDFM]

Watchman Route Problems

Q: Approx for planar
domain, standard visibility?

Q: Approx for guard on 
a terrain surface?



Find shortest tour to visit a set of 
neighborhoods P1,P2,…,Pn

TSPN: TSP with Neighborhoods



Recent result: Can apply also to yield PTAS 
for watchman route among fat obstacles

Forest

Trees

Watchman: How to 
“See the Forest for the Trees”

NP-hard

Fat obstacles: Prove m-guillotine PTAS applies to geodesic metric



Region-Bridges

M=3

Bridges

m = 4

TSPN Subproblem: A Window into OPT
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TSPN with Obstacles: Key Issue

Bridge (as in m-guillotine method)

Obstacle

Detour (needed to keep the Bridge 
connected)

Sufficient:  Obstacles are fat : then the 
detours to keep bridge connected cause 
only a constant-factor dilation to bridge 
length, which is charged off



Either: (1) limited view distance

Forest Assumptions 

p

Require robot to get within distance R of a point p in order to see it



Or: (2) forest is dense enough (e.g., 
maximal packing) so that the visibility 
region from a point deep inside the forest 
is a fat (star-shaped) region.

Forest Assumptions 

p

Radius R

Related to Polya’s Orchard Problem Olber’s paradox [1826]

r

Dark if tree radius > 1/r

Recently shown!: R < const
[Dumitrescu and Jiang, 2009]

Time:  O(nO(R))

Dark Forest Conjecture:
For R < const, there exists a 
dark point p

R < 2*10108


