Algorithms and Heuristics for Deployment of Sensors ("Guards") for Optimal Coverage

Joe Mitchell

Work joint with Y. Amit, A. Efrat, M. Irfan, J. Iwerks, J. Kim, E. Packer

Stationary Guards

The Art Gallery Problem

Experimental Investigation [Amit, M, Packer]

- Propose several heuristics for computing guards
- Experimental analysis and comparison
- Compute both upper bounds and lower bounds on OPT, so we can bound how close to OPT we get
- Conclude: heuristics work well in practice:
 - Either find OPT solution or close to optimal
 - Almost always 2-approx (always for "random" polygons)

Related Work

•Combinatorics: Lots!	Art Gallery Thm : $\lfloor \frac{n}{3} \rfloor$ guards									
	suffice and are sometimes necessary									
 Approximation algorithms 	for discrete candidate sets									
(vertex guards, grid-point g	guards, etc):									
 O(log n)-approx: set cover 	(greedy) [G87]									
 O(log k)-approx: reweighting ([Cl,BG]) [EH03,GL01] 										
•O(1)-approx in special cases										
•1.5D terrains (best: 4-a										
•Monotone polygons										
•Pseudo-poly O(log k)-app	FOX (poly in spread, n) [DKDS07]									
•Exact poly-time solutions:										
 Rectangle visibility in rec 	tilinear polygons [WK06]									
 Partitioning P into min # 	star-shaped pieces [Ke85]									
Min-length watchman to	ur (mobile guard) [CN86]									
•Other recent experiments										
 Experiments with (exp-time) combinatorial algorithm for									
guarding the boundary of P	[BL06]									

Greedy Heuristics

Two phases: Generate a set of good *candidate* guard positions Greedily select a subset of candidates that fully cover *P*

•Algorithm design choices:

- •How to specify the set of candidates?
- How to score candidates for greedy selection?

Phase 1: Generating Candidates

1. Use set V(P) = vertices of polygon P

(actually used points perturbed interior to P)

- 2. Centers C(P) of convex cells in an arrangement:
 - Edge extensions [size O(n²)]

Visibility extensions [size O(n⁴)]

3. $V(P) \cup C(P)$

(VG edges incident on at least 1 reflex vertex)

7

Example

Centers of cells in arrangement of edge extensions

Visibility extensions for VG edge (u,v)

Phase 2: Greedily Selecting Candidates

- Set of candidates: W(P)
- Greedily add "good" candidates g ∈ W(P) until P is covered: Max μ(g) g ∈ W(P)
- At end, iteratively remove redundant guards until set is *minimal*

Heuristics Used in Experimentation

Vertices and center points in arr
 Score µ(g) = # unseen candidates
 Arrangement: Edge extensions
 A₂:
 Variant: With each guard g chosen, add to
 arrangement the visibility edges V(g) induced by g

Candidates $W(P) = V(P) \cup C(P)$

Figure 2: Using algorithm A_2 : (a). The polygon and the first guard to be selected (shaded). (b). The visibility polygon of the guard (highlighted, in red) caused the addition of 8 new candidates (small black disks).

• A₁:

Heuristics Used in Experimentation

Like A_1 but: Score $\mu(g) = area$ newly seen A_3 : A₄ : Like A_1 but: $\mu(g)$ weighted by *cell area* Like A_4 but: $\mu(g)$ weighted by shared bd(P) A_5 : Like A_4 but: $\mu(g)$ weighted by % of shared bd(P) A_6 : Like A_1 but: Candidates W(P) = V(P) A_7 : A_{R} : Like A_{1} but: Candidates W(P) = C(P) A_{g} : Like A_{1} but: $\mu(g) = \#$ newly seen vertices A_{10} : Like A_1 but: $\mu(g) = \#$ newly seen cell centers A₁₁ : Like A₁ but: Arrangement of *visibility extensions* A_{12} : Combination of A_2 and A_{11}

(dynamically added edges, arr of visibility extensions)

Method: A₁₃ : Probabilistic Reweighting

We also implemented an algorithm based on the Clarkson/Bronnimann-Goodrich framework: [EH03,GL01]

Each candidate is assigned a weight : probability it is selected Initially: All weights = 1

Iteration: A candidate is selected at random

If there is an unguarded point, q, then the weights of candidates that see q are *doubled* (improve chances q is guarded on future iterations) Continue until all points of P are guarded

Method: A₁₄ : Polygon Partition

We also implemented an algorithm based on partitioning P into star-shaped pieces

(Note: min-size partition into star-shaped polygons is poly-time, using DP)

- We use a simple heuristic similar to Hertel-Mehlhorn 4-approx for min-cardinality convex partition:
- Triangulate P
- Remove diagonals iteratively, never allowing a non-starshaped piece to be created.
- Place one guard per piece

Example: A₁₄ : Polygon Partition

Lower Bounds on OPT

Lemma: $g(P) \ge |I|$, for any visibility-independent set I of points in P

 $g(P) \ge 4$

Lower Bounds on OPT

We greedily compute a visibility-independent set I:

- Generate candidate set S (not vis-indep)
- Add points p∈S iteratively to I, minimizing # points of S seen by p, making sure that VP(p) is disjoint from VP(q), for q∈I

(We use CGAL arrangements to maintain VP's and test vis-independence)

- Remove from S points seen by p
- Stop when S is empty

Lower Bounds on OPT

Experimental Setup

- Windows XP, Pentium 4 (3.2GHz, 2.0GB)
- Visual .Net compiler; openGL; CGAL
- Randomly generated polygons:
 - RPG of Auer and Held, 50-200 vertices
- Manually generated special polygons

Robust computation of cells

With exact arithmetic

Possible error with floating-point

Solution: push extensions

Examples: n=100

(b) 15 guards

(c) 16 guards

(a) 16 guards

(d) 14 guards

(e) 14 guards

(f) 13 guards

 A_1

Examples: n=100

(g) 16 guards

(h) 16 guards

(j) 14 guards

(k) 16 guards

(l) 16 guards

 A_1

More Examples

More Examples

More Examples

(h)

 (\mathbf{g})

(i)

Results on 40 polygons:

	A_1	A_2	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A ₁₃	A_{14}
$egin{array}{c} K \\ M \\ Q \\ B \end{array}$	$0.7 \\ 0.10 \\ 16 \\ 40$	$0.47 \\ 0.06 \\ 17 \\ 40$	$1.47 \\ 0.22 \\ 11 \\ 40$	$1.6 \\ 0.22 \\ 11 \\ 40$	$1.3 \\ 0.16 \\ 10 \\ 40$	1.22 0.29 10 40	$0.9 \\ 0.13 \\ 11 \\ 40$	$0.83 \\ 0.14 \\ 12 \\ 30$	$ \begin{array}{r} 1.75 \\ 0.41 \\ 8 \\ 29 \end{array} $	$0.48 \\ 0.08 \\ 15 \\ 39$	$0.5 \\ 0.09 \\ 15 \\ 38$	1.64 0.27 9 39	3.33 0.69 8 30

Table 1: Results obtained with our heuristics on 40 input sets.

- K average **excess** = *number* of guards *more* than the *min* guard number over all heuristics
- M average **relative excess** (relative to min)
- Q number of times (out of 40) the guarding obtained with the heuristic was the **best** among all heuristics
- B number of completed tests

PN	V	RV	Η	VH	RVH	A_1	A_2	A_4	A_5	A_6	A_7	A_8	A_9	A ₁₀	A ₁₁	A ₁₂	A ₁₃	A ₁₄	LB
1	24	10	0	0	0	5	4	6	5	4	5	5	4	5	4	4	3	5	2
2	9	3	0	0	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	12	7	3	12	12	8	7	8	8	7	8	8	7	6	7	7	8	X	4
4	44	20	0	0	0	13	13	12	12	13	14	13	13	11	12	12	11	20	11
5	83	52	0	0	0	2	2	2	2	2	10	2	2	X	X	X	3	22	2
6	33	19		0	0	2	2	3	2	3	4	2	2	4	2	2	4	4	
7	24	6	10	0	49	10	5	5	5	5	5	5	10	- 6 - 15	5	5	5	6 V	5
ů	4	7	12	00	40	13	13	14	14	10	12	10	10	15	9	9	14		0
10	5	6	1	2	2	3	3	2	4	4	3	4	3	4	3	3	3	4 v	3
11	6	2	1	5	5			3		3	3	2	2	3			5	x X	2
12	4	ő	13	48	44	15	12	17	17	16	15	18	16	1/	12	x x	15	x	27
13	16	6	4	16	5	15	15	7	0	8	6	6	7	6	6	6	7	x	5
14	6	3	ō	0	ŏ	2	2	2	2	2	2	2	2	2	2	2	3	x	1
15	4	0	1	20	14	6	6	6	6	6	6	6	6	6	6	6	7	Х	5
16	4	0	1	13	9	5	5	5	5	5	5	5	5	5	5	5	5	Х	4
17	15	8	0	0	0	5	5	5	5	5	5	5	5	5	5	5	5	5	5
18	49	24	0	0	0	6	7	6	7	7	7	6	6	28	5	5	Х	12	4
19	100	46	0	0	0	13	12	16	16	15	14	13	X	Х	13	13	15	Х	11
20	100	47	0	0	0	18	15	19	19	18	15	15	X	X	16	16	18	20	12
21	100	44	0	0	0	16	15	18	17	16	16	16	X	X	16	16	19	19	13
22	100	50	0	0	0	14	14	15	15	15	15	14	X	X	14	14	16	16	9
23	100	45	0	0	0	18	18	18	19	18	17	16	X	X	17	17	17	19	13
24	100	55	0	0	0	16	16	18	18	18	16	16	X	X	15	15	16	21	14
25	100	49	0	0	0	18	17	18	18	18	18	18	X	X	17	17	22	22	14
26	100	46	0	0	0	17	16	19	18	18	17	18	X	X	16	16	17	19	13
27	100	49	0	0	0	12	12	15	16	13	15	12	X	X	14	14	18	16	11
28	100	52	0	0	0	14	16	15	15	17	17	15	X	X	16	16	16	19	12
29	10	3	0	0	0	2	1	2	2	1	2	2	2	2	2	2	2	2	1
30	10	3		0	0		1	1	1	1	2	1	1 2	2	1	1	2		1
31	10	4	0	0	0	2	2	2	2	2	2	2	2	3	2	2	3	2	2

\mathbf{PN}	A_1	A_2	A_{11}	I_1	I_2	I_3	min ratio	24	16	16	15	14	14	7	1.07
1	5	4	4	2	1	1	2	25	18	17	17	14	14	8	1.21
2	2	2	2	2	2	Х	1	26	17	16	16	13	11	7	1.23
3	8	7	7	4	2	4	1.75	27	12	12	14	11	11	5	1.09
4	13	13	12	11	8	10	1.09	28	14	16	16	12	11	5	1.16
5	2	2	X	2	2	1	1	29	1	1	1	1	1	Х	1
6	$\overline{2}$	$\overline{2}$	2	$\overline{2}$	$\overline{2}$	1	1	- 30	1	1	1	1	1	Х	1
7	5	5	5	5	5	x	1	31	2	2	2	2	2	1	1
8	13	13	ğ	8	1	8	1.125	32	2	2	2	2	2	1	1
ğ	3	3	3	3	3	$\frac{1}{2}$	1	33	1	1	1	1	1	1	1
10	3	3	3	2	1	1	1.5	34	2	2	2	2	2	1	1
11	4	4	4	$\tilde{2}$	2	$\frac{1}{2}$	2	35	1	1	1	1	1	Х	1
12	15	14	13	7	$\tilde{2}$	- Ĩ	1.85	36	1	1	1	0	1	1	1
13	5	5	6	5	3	3	1	37	1	1	1	1	1	1	1
14	2	2	2	1	1	x	2	38	2	2	2	2	2	Х	1
15	$\tilde{6}$	$\tilde{6}$	$\tilde{6}$	5	5	3	1.2	39	10	9	9	8	8	3	1.125
16	5	5	5	4	4	$\frac{1}{2}$	1.25	40	8	8	8	7	7	3	1.14
17	5	5	5	5	5	1	1	41	9	9	9	8	8	3	1.125
18	Ğ	ő	5	4	4	x	1.25	42	6	6	8	6	6	5	1
19	13	12	13	11	11	6	1.09	43	6	6	7	6	6	1	1
20	18	15	16	11	12	8	1.00	44	10	10	10	8	8	3	1.25
20	16	15	16	13	12	7	1.20	45	8	8	8	8	7	4	1
22	14	15	14	9	9	5	1.10	46	8	9	8	8	8	3	1
$\frac{22}{23}$	18	18	17	13	13	5	1.3	47	6	6	6	6	6	3	1

PN	V	RV	Η	VH	RVH	A_1	A_2	A_{11}
41	24	11	0	0	0	7	7	6
42	73	40	0	0	0	19	18	18
43	4	0	17	48	48	15	12	14
44	4	0	1	57	26	9	9	9
45	4	0	1	44	26	11	9	8
46	20	8	4	24	20	9	9	10
47	24	10	8	32	32	13	13	13
48	46	21	0	0	0	11	11	11
49	40	19	0	0	0	10	10	10
50	28	12	4	32	24	7	5	6
51	40	120	0	0	0	4	4	4
52	200	101	0	0	0	35	Х	33
53	200	95	0	0	0	31	Х	31
54	200	100	0	0	0	31	Х	27
55	200	100	0	0	0	28	Х	31
56	200	104	0	0	0	31	Х	31
57	200	97	0	0	0	26	Х	26
58	200	98	0	0	0	26	Х	27
59	200	98	0	0	0	30	Х	31
60	200	98	0	0	0	26	Х	26
61	200	99	0	0	0	31	Х	30

Number of Guards vs. Number of Vertices

 A_1

 A_{2}

29

Early Termination: Partial Covering

Conclusion

• Extensions:

 Visibility constraints (view distance, good view angles, robust coverage)
 Torrain coverage (2 ED)

- •Terrain coverage (2.5D)
- •3D

•Open:

- •Any approx algorithm (better than n/3-approx) for unrestricted guards
- •O(1)-approx for vertex/grid guarding simple polygons
- •Characterization of polygons for which our heuristics perform well (provably well)?

Robust Guards

Issue: Even if we computed exactly a minimum cardinality set of guards, could we know with confidence the domain is really guarded?

Guards may not be placed exactly. (Human guards don't usually stand exactly still, and cameras/sensors cannot be placed perfectly.)

Model: When a guard is placed at p, it will actually reside at some point within a disk, $B_{\epsilon}(p)$, of radius ϵ

In order for q to be "seen" by guard p, it must be able to see the guard no matter where it is within the disk $B_{\epsilon}(p)$

Bounded radius, R, of vision

Robust Guards: New Approx Bound

Theorem: There is a PTAS for computing a min # of robust, radiusbounded guards in a polygonal domain (with holes), assuming R/ϵ is bounded, and a poly-size set G of candidate guard locations is given.

> One option for G: use a set L of O($\lambda \log^2 \lambda$) landmarks, as in [AEG08], and then guarantee at least (1- ε_1)-fraction of the area is seen.

> > $\lambda = (g_{opt} / \epsilon_1) \log h$ (h = # holes)

[AEG08] also give randomized greedy algorithm that, whp, computes $O(g_L \log \lambda)$ guards to cover L, where $g_L \leq g_{opt}$ is opt # of guards to cover L

Method: m-guillotine optimization: Convert any OPT to an m-guillotine version; apply DP to optimize

What is Needed for PTAS to Apply

Suffices: Visible regions, VP(g), from candidate guard locations $g \in G$ have area(VP(g)) $\geq c \operatorname{diam}^2(VP(g))$, for some c. (e.g., each VP(g) contains a disk of radius $\Omega(\operatorname{diam}(VP(g)))$

Guards must see all of S: Problem is **Dominating Set** in VG(S)

If samples S are δ -well dispersed (e.g., no disk of radius δ has more than O(1) samples of S), and guards have visibility radius R, with R/ δ bounded, then PTAS also applies

Minimum Dominating Set:

best approx in general is log-approx PTAS for planar graphs, UDG APX-complete for degree-B, $B \ge 3$

Here, the graph VG(S) is not planar, not UDG, but has bounded degree, depending on R/δ

Guarding Polyominoes

 Polyomino: simply connected union of m integral unit squares (pixels) – "pixel polygon"

[Irfan, Iwerks, Kim, M]

Guarding Polyominoes

Each requires just one point guard, *except* 5* and 5**

Point Guards in Polyominoes

Claim 1 Let P be an m-pixel polygon where $m \ge 2$. Then there exists a pixel p that can be removed from P yielding P' such that P' is simply connected.

8*

g*

Claim 2 Let P be any (8) besides 8^* . Then we can decompose P into two connected pixel subpolygons P_1 and P_2 such that either $|P_1| = |P_2| = 4$ or $|P_1| = 3$ and $|P_2| = 5$.

Corollary 1 If P is any (9) besides 9^* , then we may decompose P into two subpolygons P_1 and P_2 such that either $|P_1| = 3$ and $|P_2| = 6$ or $|P_1| = 4$ and $|P_2| = 5$. Also, any (10), P, is decomposable into two pixel subpolygons P_1 and P_2 such that either $|P_1| = 3$ and $|P_2| = 7$, $|P_1| = 4$ and $|P_2| = 6$, or $|P_1| = |P_2| = 5$.

Claim 3 For any m-pixel polygon P where m = 1, 2, 3, or 4, one point guard is sufficient to guard P. For any m-pixel polygon P where m = 5, 6, 7, two point guards are sufficient to guard P.

Claim 4 For any m-pixel polygon P with $m \ge 3$, pixel subpolygons $S_i \in \{(3), (4), ((5)/5^*, 5^{**}), (6), (7), 8^*, 9^*\}$ (i = 1, 2, 3, ..., f) can be removed from P yielding connected pixel polygons $P_1, P_2, ..., P_f$ where P_i is the connected pixel polygon remaining after removing the *i*th pixel subpolygon from P. Also, P_f may contain 0, 1, or 2 pixels. Corollary 2 $\left\lceil \frac{m}{3} \right\rceil$ point guards is sufficient to guard an m-pixel connected polygon P. Actually, ceil((m-1)/3)

Claim: Any hexomino (m=6) can be guarded with 1 or 2 points.

Claim: Any heptomino (m=7) can be guarded with 1 or 2 points.

40

Mobile Guards

Watchman Route Problem

Find a shortest tour for a guard to be able to see all of the domain

Watchman Route Problems

- Closely related to TSPN: visit VP(p), for all p in P
- Poly-time in simple polygons [CN,DELM] Best time bound: O(n³ log n) [DELM]
- NP-hard in polygons with holes
 - No approx algorithm known in general!
 - Rectilinear visibility: O(log n)-approx [MM'95]
 - NEW: For fat obstacles, PTAS to see at least one point on the boundary of each obstacle
- □ 3D: Depends on 3D TSPN [ADDFM]

Q: Approx for planar domain, standard visibility?

Q: Approx for guard on a terrain surface?

TSPN: TSP with Neighborhoods

Watchman: How to "See the Forest for the Trees"

Recent result: Can apply also to yield PTAS for watchman route among fat obstacles

Fat obstacles: Prove m-guillotine PTAS applies to geodesic metric

Forest

Trees

TSPN Subproblem: A Window into OPT

TSPN with Obstacles: Key Issue

Bridge (as in m-guillotine method)

Obstacle

Detour (needed to keep the Bridge connected)

Sufficient: Obstacles are *fat* : then the detours to keep bridge connected cause only a constant-factor dilation to bridge length, which is charged off

Forest Assumptions

Either: (1) limited view distance

Require robot to get within distance **R** of a point **p** in order to see it

Forest Assumptions

Or: (2) forest is dense enough (e.g., maximal packing) so that the visibility region from a point deep inside the forest is a **fat** (star-shaped) region.

Time: $O(n^{O(R)})$

Dark Forest Conjecture: For R < const, there exists a

Recently shown!: R < const [Dumitrescu and Jiang, 2009]

 $R < 2*10^{108}$

Olber's paradox [1826]