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Stationary Guards




The Art Gallery Problem

Determine a small set of “guards” to see all of a given
n-vertex polygon P NP-hard, even in simple polygon

g(P) = min # guards

Art Gallery Thm:

suffice and are sometimes necessary
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Experimental Investigation (amit, m, packer]

e Propose several heuristics for computing guards
e Experimental analysis and comparison

e Compute both upper bounds and lower bounds on
OPT, so we can bound how close to OPT we get

e Conclude: heuristics work well in practice:
e Either find OPT solution or close to optimal
e Almost always 2-approx
(always for “random” polygons)



Related Work

eCombinatorics: Lots! Art Gallery Thm: | % | guards
suffice and are sometimes necessary

eApproximation algorithms for discrete candidate sets

(vertex guards, grid-point guards, etc):
eO(log n)-approx: set cover (greedy) [G87]
*O(log k)-approx: reweighting ([Cl,BG]) [EHO3,GL01]
eO(1)-approx in special cases:
¢1.5D terrains (best: 4-approx) [BKMO05,K06,EKMMSO08]
eMonotone polygons [NiO5]
ePseudo-poly O(log k)-approx (poly in spread, n) [DKDSO07]
eExact poly-time solutions:

eRectangle visibility in rectilinear polygons [WKO06]
ePartitioning P into min # star-shaped pieces [Ke85]
eMin-length watchman tour (mobile guard) [CN86]

eOther recent experiments
eExperiments with (exp-time) combinatorial algorithm for
guarding the boundary of P [BLO6]



Greedy Heuristics

e Two phases:
eGenerate a set of good candidate guard
positions
eGreedily select a subset of candidates that
fully cover P

eAlgorithm design choices:
eHow to specify the set of candidates?
eHow to score candidates for greedy selection?




Phase 1. Generating Candidates

1. Use set V(P) = vertices of polygon P

(actually used points perturbed interior to P)

2. Centers C(P) of convex cells in an arrangement:
e Edge extensions [ size O(n?2) ]

v

e Visibility extensions [ size O(n%) ]

L7

(VG edges incident on at least 1 reflex vertex)
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3. V(P) U C(P)




Example

Centers of cells in arrangement of edge extensions

Visibility extensions for VG edge (u,v)




Phase 2: Greedily Selecting Candidates

« Set of candidates: W(P)

« Greedily add "good” candidates g € W(P)
until P is covered: Max u(g) g € W(P)

« At end, iteratively remove redundant
guards until set is minimal




Heuristics Used in Experimentation

1" candidates W(P) = V(P) u C(P)

Vertices and center points in arr
Score u(g) = # unseen candidates
Arrangement: Edge extensions

e A, :
Variant: With each guard g chosen, add to
arrangement the visibility edges V(g) induced by g

N'/

oL
/ .

Figure 2: Using algorithm Aa: (a). The polygon and the /I
first guard to be selected (shaded). (b). The visibility 10
polygon of the guard (highlighted, in red) caused the Blue: added edgeS

addition of & new candidates (small black disks).




Heuristics Used in Experimentation
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Ke A,
Ke A,
Ke Ay
Ke A,y
Ke A,
Ke A,
Ke A,
Ke A,

Ke A,

Dut:
DuUt:
Dut:
Dut:
Dut:
Dut:
Dut:
Dut:

out:

Score u(g) = area newly seen

u(g) weighted by cell area

u(g) weighted by shared bd(P)

u(g) weighted by % of shared bd(P)
Candidates W(P) = V(P)

Candidates W(P) = C(P)

u(g) = # newly seen vertices

u(g) = # newly seen cell centers
Arrangement of visibility extensions

. Combination of A, and A,
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Method: A,; : Probabilistic Reweighting

We also implemented an algorithm based on the
Clarkson/Bronnimann-Goodrich framework: [EHO3,GLO1]

Each candidate is assigned a weight : probability it is selected
Initially: All weights = 1
Iteration: A candidate is selected at random

If there is an unguarded point, g, then the weights of candidates
that see g are doubled

Continue until all points of P are guarded
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Method: A,, : Polygon Partition

We also implemented an algorithm based on partitioning P
into star-shaped pieces

(Note: min-size partition into star-shaped polygons is poly-time, using DP)

We use a simple heuristic similar to Hertel-Mehlhorn 4-approx
for min-cardinality convex partition:

« Triangulate P

« Remove diagonals iteratively, never allowing a non-star-
shaped piece to be created.

« Place one guard per piece

Not competitive
with other methods

(most cases)

@)

Particularly poor on
“spike box” examples
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Example: A,, : Polygon Partition

kernels in green v e

N

—
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Lower Bounds on OPT

Lemma: g(P) = |I|, for any visibility-independent set I
of points in P

55

D

g(P) >4
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Lower Bounds on OPT

We greedily compute a visibility-independent set I:
« Generate candidate set S (not vis-indep)
« Add points peS iteratively to I, minimizing # points of S

seen by p, making sure that VP(p) is disjoint from VP(q),
for gel

(We use CGAL arrangements to maintain VP’s and test vis-independence)
« Remove from S points seen by p
« Stop when S is empty

16



Lower Bounds on OPT

Most cases: p € bd(P) sees less

Moving away from a convex
vertex tends to see more

Moving away from a reflex
vertex tends to see less

Heuristic: Candidates S are convex vertices and
midpoints of edges of P joining two reflex vertices 17




Experimental Setup

Windows XP, Pentium 4 (3.2GHz, 2.0GB)
Visual .Net compiler; openGL; CGAL

Randomly generated polygons:
- RPG of Auer and Held, 50-200 vertices

Manually generated special polygons
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Robust computation of cells

Ny

With exact arithmetic Possible error with floating-point Solution: push extensions
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Examples: n=100

{z) 16 gusards
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More Examples
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More Examples
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Comparison of Heuristics

Results on 40 polygons:

Ay Asg Ay | As | As | Ar | As | As | Aw | A || Az | A | Aug |
K 0.7 047 1.47 1.6 1.3 1.22 0.9 0.3 1.75 || 0.48 0.5 1.64 3.33
M 0,10 0,06 0.22 0,22 0.16 0.29 0.13 0.14 0.41 0,05 0,09 0.27 0.69
o) 16 17 11 11 10 10 11 12 5 15 15 o =
B 40 40 40 40 40 40 40 30 29 39 as 39 30

Table 1: Results obtained with our heuristics on 40 input sets.

K - average excess = number of guards more than the

min guard number over all heuristics

M — average relative excess (relative to min)

Q - number of times (out of 40) the guarding obtained with

the heuristic was the best among all heuristics

B - number of completed tests
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Comparison of Heuristics

[PNT V [RV[HJ[VH] RVH [I[| A1 | Az | A2 | A= [ Ac | Az | As | As | Ao | A1 | A1z | A1z | Aia |
1 21 10 0 0 0 5 T 6 5 1 5 5 1 5 1 T 3 5
2 9 3 0 0 0 $ 2 2 2 2 2 2 2 2 2 2 2 2
3 12 7 3 12 12 7 8 8 7 8 8 7 6 7 7 8 X
1 44 20 0 0 0 13 | 13 | 12 | 12 | 13 | 14 | 13 | 13 [T ]| 12 12 20
5 83 52 0 0 0 p] p] 2 P 2 || 10 2 2 X X X 3 22
6 a3 19 0 0 0 2 2 3 2 3 4 : 2 4 2 21| 4 4
7 24 6 0 0 0 5 5 5 5 5 5 5 5 6 |[5 5 5 s
8 1 0 12 | 60 48 12 [ 12 [ 14 | 14 ] 16 | 12 | 16 | 18 15 0 0 1 X
9 17 7 0 0 0 2 T 5 4 4 |20 ¢+ |3 4 |2 3 3 4
10 5 2 1 3 3 R} T 3 3 3 3 3 3 3 3 3 3 X
11 6 2 1 5 5 4 1 1 1 4 1 3 3 1 1 1 5 X
12 4 0 12 | 48 44 15 |13 | 17 |17 | 16 | 15 | 18 | 16 14 13 X 15 X
13 16 6 4 16 5 -~ 5 7 9 8 i 6 7 6 6 6 7 X
14 6 3 0 0 0 7 p) 2 2 2 2 2 2 2 2 2 3 X
15 1 0 1 20 14 6 6 6 6 6 6 6 6 6 6 6 7 X
16 4 0 1 13 9 5 5 5 5 5 5 5 5 5 5 5 5 X

— 17 15 8 0 0 0 (3 5 5 5 5 5 5 5 3 5 5 5 5
18 49 24 0 0 0 6 7 6 7 7 7 6 6 28 5 5 X 12
19 100 | 46 0 0 0 12 12|16 |16 |15 | 14|13 ]| X X 132 12 15 X
20 100 | 47 0 0 0 18 |15 |19 19|18 |15 | 15 | X X 16 16 18 20
21 100 | 44 0 0 0 16 |15 [ 18 | 17 | 16 | 16 | 16 | X X 16 16 19 19
22 100 | 50 0 0 0 14 [ 14 | 15 |15 | 15 | 15 | 14 | X X 14 14 16 16
23 100 | 45 0 0 0 18 |18 | 18 19|18 |17 | 16 | X X 17 17 7 19
24 100 | 55 0 0 0 16 |16 | 18 1818 |16 | 16 | X X 15 15 16 21
25 100 | 49 0 0 0 18 |17 | 18 18 18 | 18 | 18 | X X 17 17 22 22
26 100 | 46 0 0 0 17 16 | 19 | 18| 18 | 17 | 18 | X X 16 16 7 19
27 100 | 49 0 0 0 12 {12 |15 |16 |13 |15 |12 | X X 14 14 18 16
28 100 | 52 0 0 0 14 16 | 15 | 15 | 17 | 17 | 15 | X X 16 16 16 19
29 10 3 0 0 0 2 |1 2 2 IrT 2 2 2 2 2 2 2 2
20 10 3 0 0 0 T T T T ™ 2 1 1 2 T T 2
a1 10 4 0 0 0 2 2 2 P 2 2 2 2 3 2 p) 3 E
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Comparison of Heuristics

PN \% RV H VH | RVH Ay Ao Al
41 24 11 0 0 0 7 7 6
42 73 40 0 0 0 19 18 18
43 4 0 17 48 48 15 12 14
44 1 0 1 57 26 9 9 9
45 4 0 1 44 26 11 9 8
46 20 8 4 24 20 9 9 10
47 24 10 8 32 32 13 13 13
48 46 21 0 0 0 11 11 11
49 40 19 0 0 0 10 10 10
50 28 12 4 32 24 7 5 6
51 40 120 0 0 0 4 4 4
52 200 101 0 0 0 35 X 33
53 200 95 0 0 0 31 X 31
54 200 100 0 0 0 31 X 27
55 200 100 0 0 0 28 X 31
56 200 104 0 0 0 31 X 31
57 200 97 0 0 0 26 X 26
58 200 98 0 0 0 26 X 27
59 200 98 0 0 0 30 X 31
60 200 98 0 0 0 26 X 26
61 200 99 0 0 0 31 X 30
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Number of Guards vs. Number of Vertices
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Early Termination: Partial Covering

s
g
0.3
0.2F .
Most cases: 80% is covered
0.1p using |I| guards
U 1 | | | | 1 1 | | |
0 5 10 15 20 25 30 35 40 45 50

Number of guards
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Conclusion

e Extensions:
eVisibility constraints (view distance, good view
angles, robust coverage)
eTerrain coverage (2.5D)
3D

eOpen:
eAny approx algorithm (better than n/3-approx)
for unrestricted guards

eO(1)-approx for vertex/grid guarding simple
polygons

eCharacterization of polygons for which our
heuristics perform well (provably well)?

31



Robust Guards

Issue: Even if we computed exactly a minimum cardinality set of
guards, could we know with confidence the domain is really
guarded?

Guards may not be placed exactly. (Human guards don’t usually
stand exactly still, and cameras/sensors cannot be placed
perfectly.)

Model: When a guard is
placed at p, it will actually
reside at some point within a
disk, B.(p), of radius ¢

In order for g to be “seen” by
guard p, it must be able to see
the guard no matter where it is
within the disk B.(p)

Bounded radius, R, of vision

32



Robust Guards: New Approx Bound

Theorem: There is a PTAS for computing a min # of robust, radius-
bounded guards in a polygonal domain (with holes), assuming R/¢ is
bounded, and a poly-size set G of candidate guard locations is given.

One option for G: use a set L of O(A log? 1)
landmarks, as in [AEG08], and then guarantee at
least (1-¢g,)-fraction of the area is seen.

A = (Qopt /&1) log h (h = # holes)
[AEGO08] also give randomized greedy
algorithm that, whp, computes O(g, log 1)

guards to cover L, where g, < g, is opt # of
guards to cover L

Method: m-guillotine optimization: Convert any OPT to an m-guillotine
version; apply DP to optimize

33




What is Needed for PTAS to Apply

Suffices: Visible regions, VP(g), from candidate guard locations geG have

area(VP(g)) = c diam?2(VP(g)), for some c. (e.g., each VP(g) contains a disk
of radius Q(diam(VP(g)) )

Special Case: Bounded
radius visibility in
polyominoes

Another Sufficient Model:
Sample points S in P.
Guards placed at subset of S.
Guards must see all of S: Problem is Dominating Set in VG(S)

If samples S are 3-well dispersed (e.g., no disk of radius 6 has more than

O(1) samples of S), and guards have visibility radius R, with R/5 bounded,

then PTAS also applies o - .
Minimum Dominating Set:

best approx in general is log-approx
PTAS for planar graphs, UDG
APX-complete for degree-B, B=3

Here, the graph VG(S) is not planar, not UDG, but has
bounded degree, depending on R/§

34



Guarding Polyominoes

[Irfan, Iwerks, Kim, M]

e Polyomino: simply connected
union of m integral unit squares
(pixels) — “pixel polygon”

e Models of pixel guards:

(1) Point guards

(2) Pixel guards

(3) Robust (pixel) guards:
Strong visibility: only

those points that are seen

from any point within the

pixel are seen




Guarding Polyominoes

Art Gallery Thm:

(1) ceil((m-1)/3) point guards suffice and are sometimes
necessary

Point Guards

(2 ceil((m-1)/3) bixel guards suffice and(ceil((m-1)/4) are
SO | necessary

OPEN: Close
the gap!

Pixel Guards

(3) floor(m/2) robust guards suffice and are sometimes
necessary: Simple coloring argument: 2-color the grid
of pixels.

Robust Pixel Guards

NP-hardness: Computing the guard number in
polyominoes is NP-hard




Examples of pentominoes

Each requires just
one point guard,
except 5* and 5**

(3)
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Point Guards in Polyominoes

LI [ L

8*
Claim 1 Let P be an m-pixel polygon where m = 2. Then there exists a pizel p that can be
removed from P yielding P’ such that P is simply connected.

Claim 2 Let P be any (8) besides 8*. Then we can decompose P into two connected pizel
subpolygons Py and Pa such that either |Py| = || =4 or |Pi| =3 and |P| =

Corollary 1 If P is any (9) besides 9*, then we may decompose P into two subpolygons Py
and Py such that either |Py| = 3 and |Ps| = 6 or |Pi| =4 and |Ps| = 5. Also, any (10), P, is
decomposable into two pirel subpolygons Py and Py such that either |Pi| =3 and || =7,
\Pi| =4 and |Pa| =6, or |P| = || =

Claim 3 For any m-puxel polygon P where m = 1, 2, 3, or 4, one point guard is sufficient
to guard P. For any m-pixel polygon P where m = 5. 6, 7, two point quards are sufficient
to quard P.

Claim 4 For any m-pizel polygon P with m > 3, purel subpolygons
S; €4(3),(4),((5)/5*,5"),(6),(7),8,9"} (i =1, 2, 3. ..., [) can be removed from P yielding
connected pizel polygons Py, Py, ..., Py where P; is the connected pizel polygon remaining after

removing the it" pizel subpolygon from P. Also, P¢ may contain 0, 1, or 2 pizels. ;
Corollary 2 [m] point quards 1s sufficient to guard an m-purel connected polygon P.
Actually, ceil((m-1)/3)




Claim: Any hexomino (m=6) can be guarded with 1 or 2 points.
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Claim: Any heptomino (m=7) can be guarded with 1 or 2 points.
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Mobile Guards




Watchman Route Problem

e

) \ | Find a shortest tour

/ <,-" for a guard to be
able to see all of

ffff’_ .--""'------
\
\ e
| .f'.':f
Ilfi:’:?# .
’ \ the domain




Watchman Route Problems

o Closely related to TSPN: visit VP(p), for | — |
allpinP |
o Poly-time in simple polygons [cn,DELM]
Best time bound: O(n3 log n) [pELM]
o NP-hard in polygons with holes
= No approx algorithm known in general!
= Rectilinear visibility: O(log n)-approx [MM’95]

= NEW: For fat obstacles, PTAS to see at least
one point on the boundary of each obstacle

o 3D: Depends on 3D TSPN [ADDFM]




TSPN: TSP with Neighborhoods

Find shortest tour to visit a set of
neighborhoods P4,P,,...,P,




Watchman: How to
“See the Forest for the Trees”

Recent result: Can apply also to yield PTAS
for watchman route among fat obstacles

Fat obstacles: Prove m-guillotine PTAS applies to geodesic metric

NP-hard
Forest

Trees




TSPN Subproblem: A Window into OPT

Brldges ‘ﬁh . '

E s

Reglon Brldges




TSPN with Obstacles: Key Issue

N Bridge (as in m-guillotine method)

Obstacle

Detour (needed to keep the Bridge
connected)

Sufficient: Obstacles are fat : then the
detours to keep bridge connected cause
only a constant-factor dilation to bridge
length, which is charged off
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Forest Assumptions

Either: (1) limited view distance

Require robot to get within distance R of a point p in order to see it




Forest Assumptions

Or: (2) forest is dense enough (e.qg.,
maximal packing) so that the visibility
region from a point deep inside the forest
is a fat (star-shaped) region.

Time: O(nOR))

“ Dark Forest Conjecture:

For R < const, there exists a

0060000 dark point p

00 000 600

O 0000 00 o

ETERXEEEX Recently shown!: R < const
ee~g00 000 [Dumitrescu and Jiang, 2009]
O 0000 0 00

9 0000 0 N o R<2*10108

O8N 000 5 00

Dark if tree radius > 1/r



