Quota Dynamics and the Intertemporal Allocation of Salesforce Effort

Sanjog Misra (Rochester Simon) Harikesh Nair (Stanford GSB)

Stanford Operations Research

February 2009
Output based incentives ubiquitous in compensation schemes
Output based incentives ubiquitous in compensation schemes

- Contractual mechanism that induce effort even in partial information settings.
Output based incentives ubiquitous in compensation schemes

- Contractual mechanism that induce effort even in partial information settings.

Most Salesforce compensation plans are based on some combination of fixed (salary) and variable (incentive) components.
Output based incentives ubiquitous in compensation schemes

- Contractual mechanism that induce effort even in partial information settings.

Most Salesforce compensation plans are based on some combination of fixed (salary) and variable (incentive) components.

Theoretically optimal incentive schemes are smooth & non-linear (e.g. Holmstrom 1979)
Introduction
Compensation Schemes

- Output based incentives ubiquitous in compensation schemes
 - Contractual mechanism that induce effort even in partial information settings.
- Most Salesforce compensation plans are based on some combination of fixed (salary) and variable (incentive) components.
- Theoretically optimal incentive schemes are smooth & non-linear (e.g. Holmstrom 1979)
- Real-world compensation schemes are discrete and jumpy
Output based incentives ubiquitous in compensation schemes

- Contractual mechanism that induce effort even in partial information settings.

Most Salesforce compensation plans are based on some combination of fixed (salary) and variable (incentive) components.

Theoretically optimal incentive schemes are smooth & non-linear (e.g. Holmstrom 1979)

Real-world compensation schemes are discrete and jumpy

- Quotas and Quota related incentives are ubiquitous
Output based incentives ubiquitous in compensation schemes

- Contractual mechanism that induce effort even in partial information settings.

Most Salesforce compensation plans are based on some combination of fixed (salary) and variable (incentive) components.

Theoretically optimal incentive schemes are smooth & non-linear (e.g. Holmstrom 1979)

Real-world compensation schemes are discrete and jumpy

- Quotas and Quota related incentives are ubiquitous
Output based incentives ubiquitous in compensation schemes
 - Contractual mechanism that induce effort even in partial information settings.

Most Salesforce compensation plans are based on some combination of fixed (salary) and variable (incentive) components.

Theoretically optimal incentive schemes are smooth & non-linear (e.g. Holmstrom 1979)

Real-world compensation schemes are discrete and jumpy
 - Quotas and Quota related incentives are ubiquitous

While there is a large literature on incentives in general
Output based incentives ubiquitous in compensation schemes

- Contractual mechanism that induce effort even in partial information settings.

Most Salesforce compensation plans are based on some combination of fixed (salary) and variable (incentive) components.

Theoretically optimal incentive schemes are smooth & non-linear (e.g. Holmstrom 1979)

Real-world compensation schemes are discrete and jumpy

- Quotas and Quota related incentives are ubiquitous

While there is a large literature on incentives in general

- The literature on quotas (theory and empirical) is relatively sparse
Quotas
Discontinuous changes in compensation

- Quotas are contractually predetermined points on a performance metric which involve a discontinuous change in the compensation scheme.
Quotas
Discontinuous changes in compensation

- Quotas are contractually predetermined points on a performance metric which involve a discontinuous change in the compensation scheme.
 - Salary + Bonus (if quota is met or exceeded)
Quotas

Discontinuous changes in compensation

- Quotas are contractually predetermined points on a performance metric which involve a discontinuous change in the compensation scheme.
 - Salary + Bonus (if quota is met or exceeded)
- Quotas essentially serve two roles
Quotas

Discontinuous changes in compensation

- Quotas are contractually predetermined points on a performance metric which involve a discontinuous change in the compensation scheme.
 - Salary + Bonus (if quota is met or exceeded)

- Quotas essentially serve two roles
 - They act as motivational, goal forming, devices (Darmon 1997)
Quotas
Discontinuous changes in compensation

- Quotas are contractually predetermined points on a performance metric which involve a discontinuous change in the compensation scheme.
 - Salary + Bonus (if quota is met or exceeded)
- Quotas essentially serve two roles
 - They act as motivational, goal forming, devices (Darmon 1997)
 - Approximate curvature of nonlinear plans (Raju and Srinivasan 1996)

Quota Dynamics
February 2009 3 / 39
Quotas

Discontinuous changes in compensation

- Quotas are contractually predetermined points on a performance metric which involve a discontinuous change in the compensation scheme.
 - Salary + Bonus (if quota is met or exceeded)

- Quotas essentially serve two roles
 - They act as motivational, goal forming, devices (Darmon 1997)
 - Approximate curvature of nonlinear plans (Raju and Srinivasan 1996)

- Quotas are heterogeneous, dynamic and often asymmetrically ratcheted
Quotas

Discontinuous changes in compensation

- Quotas are contractually predetermined points on a performance metric which involve a discontinuous change in the compensation scheme.
 - Salary + Bonus (if quota is met or exceeded)

- Quotas essentially serve two roles
 - They act as motivational, goal forming, devices (Darmon 1997)
 - Approximate curvature of nonlinear plans (Raju and Srinivasan 1996)

- Quotas are heterogeneous, dynamic and often asymmetrically ratcheted
 - Heterogeneous: Differ across salespeople
Quotas
Discontinuous changes in compensation

- Quotas are contractually predetermined points on a performance metric which involve a discontinuous change in the compensation scheme.
 - Salary + Bonus (if quota is met or exceeded)

- Quotas essentially serve two roles
 - They act as motivational, goal forming, devices (Darmon 1997)
 - Approximate curvature of nonlinear plans (Raju and Srinivasan 1996)

- Quotas are heterogeneous, dynamic and often asymmetrically ratcheted
 - Heterogeneous: Differ across salespeople
 - Dynamic: Evolve over time
Quotas
Discontinuous changes in compensation

- Quotas are contractually predetermined points on a performance metric which involve a discontinuous change in the compensation scheme.
 - Salary + Bonus (if quota is met or exceeded)

- Quotas essentially serve two roles
 - They act as motivational, goal forming, devices (Darmon 1997)
 - Approximate curvature of nonlinear plans (Raju and Srinivasan 1996)

- Quotas are heterogeneous, dynamic and often asymmetrically ratcheted
 - Heterogeneous: Differ across salespeople
 - Dynamic: Evolve over time
 - Asymmetric Ratcheting: Quotas increased with higher performance but not lowered often.
Quotas
Discontinuous changes in compensation

- Quotas are contractually predetermined points on a performance metric which involve a discontinuous change in the compensation scheme.
 - Salary + Bonus (if quota is met or exceeded)

- Quotas essentially serve two roles
 - They act as motivational, goal forming, devices (Darmon 1997)
 - Approximate curvature of nonlinear plans (Raju and Srinivasan 1996)

- Quotas are heterogeneous, dynamic and often asymmetrically ratcheted
 - Heterogeneous: Differ across salespeople
 - Dynamic: Evolve over time
 - Asymmetric Ratcheting: Quotas increased with higher performance but not lowered often.

- Salespeople choose effort based on achievement relative to quota
Quotas can give rise to substantial inefficiencies
Quotas and Dynamic Moral Hazard

- Quotas can give rise to substantial inefficiencies
- Effort bunching *within* a quota horizon

Goal of paper

Empirically measure effect of quota-based incentive schemes on the intertemporal allocation of effort

Extent of inefficiency (key point)

Has to be measured relative to a counterfactual compensation scheme

Requires model for simulating behavior under counterfactual

Develop dynamic structural model of agent-behavior

Agent is forward-looking, recognizes effect of current effort on future payoffs

Reducing effort has an option value
Quotas can give rise to substantial inefficiencies

Effort bunching *within* a quota horizon

- Periods of shirking followed by those with productive effort

Goal of paper

Empirically measure effect of quota-based incentive schemes on the intertemporal allocation of effort

Extent of inefficiency (key point)

Has to be measured relative to a counterfactual compensation scheme

Requires model for simulating behavior under counterfactual

Develop dynamic structural model of agent-behavior

Agent is forward-looking, recognizes effort on future payoffs

Reducing effort has an option value
Quotas can give rise to substantial inefficiencies
- Effort bunching *within* a quota horizon
 - Periods of shirking followed by those with productive effort
- Inefficient intertemporal shifting of effort *across* quota horizons

Goal of paper
Empirically measure effect of quota-based incentive schemes on the intertemporal allocation of effort
Extent of inefficiency (key point)
Has to be measured relative to a counterfactual compensation scheme
Requires model for simulating behavior under counterfactual
Develop dynamic structural model of agent-behavior
Agent is forward-looking, recognizes effort on future payoffs
Reducing effort has an option value
Quotas and Dynamic Moral Hazard

- Quotas can give rise to substantial inefficiencies
- Effort bunching *within* a quota horizon
 - Periods of shirking followed by those with productive effort
- Inefficient intertemporal shifting of effort *across* quota horizons
 - Reduce effort when agent has little chance of being “in the money”
Quotas and Dynamic Moral Hazard

- Quotas can give rise to substantial inefficiencies
- Effort bunching *within* a quota horizon
 - Periods of shirking followed by those with productive effort
- Inefficient intertemporal shifting of effort *across* quota horizons
 - Reduce effort when agent has little chance of being “in the money”
 - Reallocate effort if quota is already “made” and plans are regressive

Goal of paper

- Empirically measure effect of quota-based incentive schemes on the intertemporal allocation of effort
- Extent of inefficiency (key point)
 - Has to be measured relative to a counterfactual compensation scheme
 - Requires model for simulating behavior under counterfactual conditions

Develop dynamic structural model of agent-behavior

Agent is forward-looking, recognizes effect of current effort on future payoffs

Reducing effort has an option value
Quotas and Dynamic Moral Hazard

- Quotas can give rise to substantial inefficiencies
- Effort bunching *within* a quota horizon
 - Periods of shirking followed by those with productive effort
- Inefficient intertemporal shifting of effort *across* quota horizons
 - Reduce effort when agent has little chance of being “in the money”
 - Reallocate effort if quota is already “made” and plans are regressive
- Goal of paper
Quotas and Dynamic Moral Hazard

- Quotas can give rise to substantial inefficiencies
- Effort bunching *within* a quota horizon
 - Periods of shirking followed by those with productive effort
- Inefficient intertemporal shifting of effort *across* quota horizons
 - Reduce effort when agent has little chance of being “in the money”
 - Reallocation of effort if quota is already “made” and plans are regressive

Goal of paper
- Empirically measure effect of quota-based incentive schemes on the intertemporal allocation of effort
Quotas and Dynamic Moral Hazard

- Quotas can give rise to substantial inefficiencies
- Effort bunching *within* a quota horizon
 - Periods of shirking followed by those with productive effort
- Inefficient intertemporal shifting of effort *across* quota horizons
 - Reduce effort when agent has little chance of being “in the money”
 - Reallocate effort if quota is already “made” and plans are regressive
- Goal of paper
 - Empirically measure effect of quota-based incentive schemes on the intertemporal allocation of effort
 - Extent of inefficiency (key point)
Quotas and Dynamic Moral Hazard

- Quotas can give rise to substantial inefficiencies
- Effort bunching *within* a quota horizon
 - Periods of shirking followed by those with productive effort
- Inefficient intertemporal shifting of effort *across* quota horizons
 - Reduce effort when agent has little chance of being “in the money”
 - Reallocation of effort if quota is already “made” and plans are regressive

Goal of paper
- Empirically measure effect of quota-based incentive schemes on the intertemporal allocation of effort
- Extent of inefficiency (key point)
 - Has to be measured relative to a counterfactual compensation scheme
Quotas and Dynamic Moral Hazard

- Quotas can give rise to substantial inefficiencies
- Effort bunching *within* a quota horizon
 - Periods of shirking followed by those with productive effort
- Inefficient intertemporal shifting of effort *across* quota horizons
 - Reduce effort when agent has little chance of being “in the money”
 - Reallocate effort if quota is already “made” and plans are regressive
- Goal of paper
 - Empirically measure effect of quota-based incentive schemes on the intertemporal allocation of effort
 - Extent of inefficiency (key point)
 - Has to be measured relative to a counterfactual compensation scheme
 - Requires model for simulating behavior under counterfactual
Quotas and Dynamic Moral Hazard

- Quotas can give rise to substantial inefficiencies
- Effort bunching *within* a quota horizon
 - Periods of shirking followed by those with productive effort
- Inefficient intertemporal shifting of effort *across* quota horizons
 - Reduce effort when agent has little chance of being “in the money”
 - Reallocation effort if quota is already “made” and plans are regressive
- Goal of paper
 - Empirically measure effect of quota-based incentive schemes on the intertemporal allocation of effort
 - Extent of inefficiency (key point)
 - Has to be measured relative to a counterfactual compensation scheme
 - Requires model for simulating behavior under counterfactual
- Develop dynamic structural model of agent-behavior
Quotas and Dynamic Moral Hazard

- Quotas can give rise to substantial inefficiencies
- Effort bunching *within* a quota horizon
 - Periods of shirking followed by those with productive effort
- Inefficient intertemporal shifting of effort *across* quota horizons
 - Reduce effort when agent has little chance of being “in the money”
 - Reallocation of effort if quota is already “made” and plans are regressive
- Goal of paper
 - Empirically measure effect of quota-based incentive schemes on the intertemporal allocation of effort
 - Extent of inefficiency (key point)
 - Has to be measured relative to a counterfactual compensation scheme
 - Requires model for simulating behavior under counterfactual
- Develop dynamic structural model of agent-behavior
 - Agent is forward-looking, recognizes effect of current effort on future payoffs
Quotas and Dynamic Moral Hazard

- Quotas can give rise to substantial inefficiencies
- Effort bunching *within* a quota horizon
 - Periods of shirking followed by those with productive effort
- Inefficient intertemporal shifting of effort *across* quota horizons
 - Reduce effort when agent has little chance of being “in the money”
 - Reallocate effort if quota is already “made” and plans are regressive

Goal of paper

- Empirically measure effect of quota-based incentive schemes on the intertemporal allocation of effort
- Extent of inefficiency (key point)
 - Has to be measured relative to a counterfactual compensation scheme
 - Requires model for simulating behavior under counterfactual

Develop dynamic structural model of agent-behavior

- Agent is forward-looking, recognizes effect of current effort on future payoffs
- Reducing effort has an option value
Contribution Relative to the Literature

Rich theory, but very sparse empirical work

- Theory

- Agency theory on incentive design (Holmstrom 1979, Lazear 1986; Holmstrom & Milgrom 1987)
- Salesforce compensation & design (Basu et al. 1985; Rao 1990; Lal & Srinivasan 1993)
- Quotas (Coughlan & Narsimhan 1992; Raju & Srinivasan 1996; Gaba and Kalra 1999; Oyer 2000)
- No theory of dynamic effort allocation under quota/commission scheme (as far as we know)

Limited empirical work has focused on providing descriptive evidence that agents can manipulate timing of sales

- Healey (1985); Oyer (1998); Asch (1990); Steenburgh (2008)
- Measuring the effect of quotas on revenues
- First structural model of dynamic effort allocation in sales-force compensation setting (Larkin 2008; Copeland and Monnet 2008)

Misra & Nair (Rochester & Stanford)
Contribution Relative to the Literature

Rich theory, but very sparse empirical work

- Theory
 - Agency theory on incentive design (Holmstrom 1979, Lazear 1986; Holmstrom & Milgrom 1987)
 - Salesforce compensation & design (Basu et al. 1985; Rao 1990; Lal & Srinivasan 1993)
 - Quotas (Coughlan & Narsimhan 1992; Raju & Srinivasan 1996; Gaba and Kalra 1999; Oyer 2000)
 - Limited empirical work has focused on providing descriptive evidence that agents can manipulate timing of sales (Healey 1985; Oyer 1998; Asch 1990; Steenburgh 2008)
 - Measuring the effect of quotas on revenues
 - First structural model of dynamic effort allocation in sales-force compensation setting (Larkin 2008; Copeland and Monnet 2008)

Misra & Nair (Rochester & Stanford)
Contribution Relative to the Literature

Rich theory, but very sparse empirical work

- Theory
 - Agency theory on incentive design (Holmstrom 1979, Lazear 1986; Holmstrom & Milgrom 1987)
 - Salesforce compensation & design (Basu et. al.1985; Rao 1990; Lal & Srinivasan 1993)
 - Quotas (Coughlan & Narsimhan 1992; Raju & Srinivasan 1996; Gaba and Kalra 1999; Oyer 2000)

 No theory of dynamic effort allocation under quota/commission scheme (as far as we know)

 Limited empirical work has focused on providing descriptive evidence that agents can manipulate timing of sales
 - Healey (1985); Oyer (1998); Asch (1990); Steenburgh (2008)
 - Measuring the effect of quotas on revenues

 First structural model of dynamic effort allocation in sales-force compensation setting
 - Larkin (2008); Copeland and Monnet (2008)
Contribution Relative to the Literature

Rich theory, but very sparse empirical work

- **Theory**
 - Agency theory on incentive design (Holmstrom 1979, Lazear 1986; Holmstrom & Milgrom 1987)
 - Salesforce compensation & design (Basu et. al.1985; Rao 1990; Lal & Srinivasan 1993)
 - Quotas (Coughlan & Narsimhan 1992; Raju & Srinivasan 1996; Gaba and Kalra 1999; Oyer 2000)
Theory

- Agency theory on incentive design (Holmstrom 1979, Lazear 1986; Holmstrom & Milgrom 1987)
- Salesforce compensation & design (Basu et. al.1985; Rao 1990; Lal & Srinivasan 1993)
- Quotas (Coughlan & Narsimhan 1992; Raju & Srinivasan 1996; Gaba and Kalra 1999; Oyer 2000)
- No theory of dynamic effort allocation under quota/commission scheme (as far as we know)
Contribution Relative to the Literature

Rich theory, but very sparse empirical work

- **Theory**
 - Agency theory on incentive design (Holmstrom 1979, Lazear 1986; Holmstrom & Milgrom 1987)
 - Salesforce compensation & design (Basu et. al.1985; Rao 1990; Lal & Srinivasan 1993)
 - Quotas (Coughlan & Narsimhan 1992; Raju & Srinivasan 1996; Gaba and Kalra 1999; Oyer 2000)
 - No theory of dynamic effort allocation under quota/commission scheme (as far as we know)

- Limited empirical work has focused on providing descriptive evidence that agents can manipulate timing of sales
Contribution Relative to the Literature
Rich theory, but very sparse empirical work

- **Theory**
 - Agency theory on incentive design (Holmstrom 1979, Lazear 1986; Holmstrom & Milgrom 1987)
 - Salesforce compensation & design (Basu et al. 1985; Rao 1990; Lal & Srinivasan 1993)
 - Quotas (Coughlan & Narsimhan 1992; Raju & Srinivasan 1996; Gaba and Kalra 1999; Oyer 2000)
 - No theory of dynamic effort allocation under quota/commission scheme (as far as we know)

- **Limited empirical work has focused on providing descriptive evidence that agents can manipulate timing of sales**
 - Healey (1985); Oyer (1998); Asch (1990); Steenburgh (2008)
Contribution Relative to the Literature

Rich theory, but very sparse empirical work

- **Theory**
 - Agency theory on incentive design (Holmstrom 1979, Lazear 1986; Holmstrom & Milgrom 1987)
 - Salesforce compensation & design (Basu et. al.1985; Rao 1990; Lal & Srinivasan 1993)
 - Quotas (Coughlan & Narsimhan 1992; Raju & Srinivasan 1996; Gaba and Kalra 1999; Oyer 2000)
 - No theory of dynamic effort allocation under quota/commission scheme (as far as we know)

- Limited empirical work has focused on providing descriptive evidence that agents can manipulate timing of sales
 - Healey (1985); Oyer (1998); Asch (1990); Steenburgh (2008)

- Measuring the effect of quotas on revenues
Contribution Relative to the Literature

Rich theory, but very sparse empirical work

- **Theory**
 - Agency theory on incentive design (Holmstrom 1979, Lazear 1986; Holmstrom & Milgrom 1987)
 - Salesforce compensation & design (Basu et. al.1985; Rao 1990; Lal & Srinivasan 1993)
 - Quotas (Coughlan & Narsimhan 1992; Raju & Srinivasan 1996; Gaba and Kalra 1999; Oyer 2000)
 - No theory of dynamic effort allocation under quota/commission scheme (as far as we know)

- Limited empirical work has focused on providing descriptive evidence that agents can manipulate timing of sales
 - Healey (1985); Oyer (1998); Asch (1990); Steenburgh (2008)

- Measuring the effect of quotas on revenues
 - First structural model of dynamic effort allocation in sales-force compensation setting
Contribution Relative to the Literature

Rich theory, but very sparse empirical work

Theory

- Agency theory on incentive design (Holmstron 1979, Lazear 1986; Holmstrom & Milgrom 1987)
- Salesforce compensation & design (Basu et. al.1985; Rao 1990; Lal & Srinivasan 1993)
- Quotas (Coughlan & Narsimhan 1992; Raju & Srinivasan 1996; Gaba and Kalra 1999; Oyer 2000)
- No theory of dynamic effort allocation under quota/commission scheme (as far as we know)

Limited empirical work has focused on providing descriptive evidence that agents can manipulate timing of sales

- Healey (1985); Oyer (1998); Asch (1990); Steenburgh (2008)

Measuring the effect of quotas on revenues

- First structural model of dynamic effort allocation in sales-force compensation setting
 - Larkin (2008); Copeland and Monnet (2008)
Agenda

- Introduction
- Model Framework
- Data and Model-Free Evidence
- Econometric Implementation
- Results
- Counterfactuals
- Conclusions
Compensation Scheme in Data

- Compensation = Salary + Commission \times I(Quota < Sales < Ceiling)
 - No bonus, Ceiling is a fixed fraction of quota
 - Quota is reset on a quarterly basis and is adjusted based on current performance ("ratcheting")
Compensation Scheme

\[w_t = \alpha + \beta I(I_t = N) \left[\left(\frac{Q_t + q_t - a_t}{b_t - a_t} \right) I(a_t \leq Q_t + q_t \leq b_t) + I(Q_t + q_t > b_t) \right] \]
Model Framework

Compensation Scheme, States, Payoffs

- Compensation Scheme

\[w_t = \alpha + \beta I(I_t = N) \left[\left(\frac{Q_t + q_t - a_t}{b_t - a_t} \right) I(a_t \leq Q_t + q_t \leq b_t) \right. \]

\[\left. + I(Q_t + q_t > b_t) \right] \]

- States
Compensation Scheme

\[w_t = \alpha + \beta I(I_t = N) \left[\left(\frac{Q_t + q_t - a_t}{b_t - a_t} \right) I(a_t \leq Q_t + q_t \leq b_t) \right. \\
\left. + I(Q_t + q_t > b_t) \right] \]

States

- \(Q_t \), cumulative sales achieved in quarter
Model Framework
Compensation Scheme, States, Payoffs

- Compensation Scheme

\[w_t = \alpha + \beta I(t = N) \left[\left(\frac{Q_t + q_t - a_t}{b_t - a_t} \right) I(a_t \leq Q_t + q_t \leq b_t) + I(Q_t + q_t > b_t) \right] \]

- States
 - \(Q_t \), cumulative sales achieved in quarter
 - \(a_t \), current quota
Model Framework
Compensation Scheme, States, Payoffs

- **Compensation Scheme**

\[w_t = \alpha + \beta I (l_t = N) \left[\left(\frac{Q_t + q_t - a_t}{b_t - a_t} \right) I (a_t \leq Q_t + q_t \leq b_t) \right. \]

+ \left. I(Q_t + q_t > b_t) \right] \]

- **States**
 - \(Q_t\), cumulative sales achieved in quarter
 - \(a_t\), current quota
 - \(l_t\), months since the beginning of the quarter
Model Framework
Compensation Scheme, States, Payoffs

- **Compensation Scheme**

 \[w_t = \alpha + \beta I(l_t = N) \left[\left(\frac{Q_t + q_t - a_t}{b_t - a_t} \right) I(a_t \leq Q_t + q_t \leq b_t) + I(Q_t + q_t > b_t) \right] \]

- **States**
 - \(Q_t \), cumulative sales achieved in quarter
 - \(a_t \), current quota
 - \(l_t \), months since the beginning of the quarter

- **Sales are a stochastic function of effort, which is a function of the agent’s state**

 \[q_t = g(e_t(s_t), z) + \epsilon_t \]
Model Framework
Compensation Scheme, States, Payoffs

- **Compensation Scheme**

\[w_t = \alpha + \beta \mathbb{1}(I_t = N) \left[\left(\frac{Q_t + q_t - a_t}{b_t - a_t} \right) \mathbb{1}(a_t \leq Q_t + q_t \leq b_t) \right. \]

\[\left. + \mathbb{1}(Q_t + q_t > b_t) \right] \]

- **States**
 - \(Q_t \), cumulative sales achieved in quarter
 - \(a_t \), current quota
 - \(I_t \), months since the beginning of the quarter

- **Sales are a stochastic function of effort, which is a function of the agent’s state**

\[q_t = g \left(e_t \left(s_t \right), z \right) + \epsilon_t \]

- **Current Payoff**

\[u_t = E [w_t] - r \text{ var} [w_t] - C \left(e_t; d \right) \]
Model Framework

Cumulative Sales

\[Q_{t+1} = \begin{cases}
Q_t + q_t & \text{if } I_t < N \\
0 & \text{if } I_t = N
\end{cases} \]
Model Framework

State Transitions

- Cumulative Sales

\[Q_{t+1} = \begin{cases}
Q_t + q_t & \text{if } I_t < N \\
0 & \text{if } I_t = N
\end{cases} \]

- Quotas ("ratcheting")

\[a_{t+1} = \begin{cases}
a_t & \text{if } I_t < N \\
\sum_{k=1}^{K} \theta_k \Gamma (a_t, Q_t + q_t) + v_{t+1} & \text{if } I_t = N
\end{cases} \]
Model Framework

State Transitions

- **Cumulative Sales**

\[
Q_{t+1} = \begin{cases}
Q_t + q_t & \text{if } I_t < N \\
0 & \text{if } I_t = N
\end{cases}
\]

- **Quotas ("ratcheting")**

\[
a_{t+1} = \begin{cases}
a_t & \text{if } I_t < N \\
\sum_{k=1}^{K} \theta_k \Gamma(a_t, Q_t + q_t) + v_{t+1} & \text{if } I_t = N
\end{cases}
\]

- **Months of the quarter**

\[
I_{t+1} = \begin{cases}
I_t + 1 & \text{if } I_t < N \\
1 & \text{if } I_t = N
\end{cases}
\]
Value Function

Early in the quota cycle

\[V(Q_t, a_t, l_t; \Omega, \Psi) = \]

\[
\max_{e>0} \left\{ \begin{array}{c}
\quad u(Q_t, a_t, l_t, e; \Omega, \Psi) \\
+ \rho \int_{\varepsilon} V(Q_{t+1} = Q(Q_t, q(\varepsilon_t, e)), a_{t+1} = a_t, l_t + 1; \Omega, \Psi) \\
\times f(\varepsilon_t) d\varepsilon_t
\end{array} \right. \]
Value Function

End of the quota cycle

\[V(Q_t, a_t, N; \Omega, \Psi) = \]

\[
\max_{e > 0} \left\{ \begin{array}{l}
\begin{align*}
u(Q_t, a_t, N, e; \Omega, \Psi) \\
+ \rho \int \int V(Q_{t+1} = 0, a_{t+1} = a(Q_t, q(\varepsilon_t, e), a_t, \nu_{t+1}), 1) \\
\times f(\varepsilon_t) \phi(\nu_{t+1}) d\varepsilon_t d\nu_{t+1}
\end{align*}
\end{array} \right\}
\]
Value Function

End of the quota cycle

\[V (Q_t, a_t, N; \Omega, \Psi) = \max_{e > 0} \begin{cases} u (Q_t, a_t, N, e; \Omega, \Psi) \\ + \rho \int_{v} \int_{\varepsilon} V (Q_{t+1} = 0, a_{t+1} = a (Q_t, q (\varepsilon_t, e), a_t, v_{t+1}) , 1) \times f (\varepsilon_t) \phi (v_{t+1}) \, d\varepsilon_t \, dv_{t+1} \end{cases} \]

- Optimal effort solves

\[e (s_t; \Omega, \Psi) = \arg \max_{e > 0} \{ V (s_t; \Omega, \Psi) \} \]
Value Function

End of the quota cycle

\[V(Q_t, a_t, N; \Omega, \Psi) = \]

\[\max_{e > 0} \left\{ u(Q_t, a_t, N, e; \Omega, \Psi) \right. \]

\[+ \rho \int_v \int_\varepsilon V(Q_{t+1} = 0, a_{t+1} = a(Q_t, q(\varepsilon_t, e), a_t, \nu_{t+1}), 1) \]

\[\times f(\varepsilon_t) \phi(\nu_{t+1}) \, d\varepsilon_t \, d\nu_{t+1} \]

- Optimal effort solves

\[e(s_t; \hat{\Omega}, \Psi) = \arg \max_{e > 0} \left\{ V(s_t; \Omega, \Psi) \right\} \]

- Empirical Approach

 - Estimate \(\hat{\Omega} \) given \(\Psi \) and current DGP
 - Simulate \(e(s_t; \hat{\Omega}, \Psi = \Psi_{new}) \) under counterfactual
Our Data are Unusually Rich
Cross-sectional and Temporal Variation for Each Agent

- Data come from a salesforce/division of a Fortune 500 firm
- Medical product (non-pharma) prescribed by physician
- Spans four years (2004-2007)
- Sales and detailing calls for each salesperson at month/client level
 - Salesforce has about 90 salespeople
 - on average ~150 clients per salesperson!
 - Gives us ~3600 obs per salesperson and ~324,000 obs total.
- Complete compensation details for each salesperson
 - Quotas for each quarter
 - Commissions and salaries paid.
Descriptive Statistics of Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td>$67,632</td>
<td>$8,585</td>
</tr>
<tr>
<td>Incentive Proportion at Quota</td>
<td>0.23</td>
<td>0.02</td>
</tr>
<tr>
<td>Age</td>
<td>43.23</td>
<td>10.03</td>
</tr>
<tr>
<td>Tenure</td>
<td>9.08</td>
<td>8.42</td>
</tr>
<tr>
<td>Num _Clients</td>
<td>162.20</td>
<td>19.09</td>
</tr>
<tr>
<td>Quota</td>
<td>$397,020</td>
<td>$95,680</td>
</tr>
<tr>
<td>Cum:Sales (end of quarter)</td>
<td>$374,755</td>
<td>$89,947</td>
</tr>
<tr>
<td>%ΔQuota (when +)</td>
<td>10.01%</td>
<td>12.48%</td>
</tr>
<tr>
<td>%ΔQuota (when -)</td>
<td>-5.53%</td>
<td>10.15%</td>
</tr>
<tr>
<td>Monthly Sales</td>
<td>$138,149</td>
<td>$38,319</td>
</tr>
<tr>
<td>Cum:Sales (beg: of month)</td>
<td>$114,344</td>
<td>$98,594</td>
</tr>
<tr>
<td>Distance to Quota (beg: of month)</td>
<td>$278,858</td>
<td>$121,594</td>
</tr>
</tbody>
</table>
Effort Timing by Agents
Model free evidence - Sales as a function of distance to quota
Effort Timing by Agents

Model Free Evidence - Near Quota Effort

% Quota at end of month 2
% Quota at end of month 3
% Quota at end of month 2
% Quota at end of month 3

Misra & Nair (Rochester & Stanford)
Quota Dynamics
February 2009
Our estimation approach uses a two-step approach (Bajari, Benkard and Levin 2007)
Our estimation approach uses a two-step approach (Bajari, Benkard and Levin 2007)

- Non-parametrically estimate policy functions in first-stage estimation approach.
- Estimate parameters by minimizing violations of dynamic optimality.
Our estimation approach uses a two-step approach (Bajari, Benkard and Levin 2007)

- Non-parametrically estimate policy functions in first-stage
- Estimate parameters by minimizing violations of dynamic optimality
Our estimation approach uses a two-step approach (Bajari, Benkard and Levin 2007)

- Non-parametrically estimate policy functions in first-stage
- Estimate parameters by minimizing violations of dynamic optimality

Agent-level data of unusually long duration and cross-section
Our estimation approach uses a two-step approach (Bajari, Benkard and Levin 2007)

- Non-parametrically estimate policy functions in first-stage
- Estimate parameters by minimizing violations of dynamic optimality

Agent-level data of unusually long duration and cross-section

- Accommodate non-parametrically, unobserved agent heterogeneity
Our estimation approach uses a two-step approach (Bajari, Benkard and Levin 2007)

- Non-parametrically estimate policy functions in first-stage
- Estimate parameters by minimizing violations of dynamic optimality

Agent-level data of unusually long duration and cross-section

- Accommodate non-parametrically, unobserved agent heterogeneity

Estimate policy functions & parameters agent by agent
Our estimation approach uses a two-step approach (Bajari, Benkard and Levin 2007)

- Non-parametrically estimate policy functions in first-stage
- Estimate parameters by minimizing violations of dynamic optimality

Agent-level data of unusually long duration and cross-section

- Accommodate non-parametrically, unobserved agent heterogeneity

Estimate policy functions & parameters agent by agent

Important Econometric Challenge

Unobservability of effort (pervasive in principal-agent settings)
Our estimation approach uses a two-step approach (Bajari, Benkard and Levin 2007)

- Non-parametrically estimate policy functions in first-stage
- Estimate parameters by minimizing violations of dynamic optimality

Agent-level data of unusually long duration and cross-section

- Accommodate non-parametrically, unobserved agent heterogeneity

Estimate policy functions & parameters agent by agent

Important Econometric Challenge

- Unobservability of effort (pervasive in principal-agent settings)
Identification of Effort Policy

Figure: Misra & Nair (Rochester & Stanford)
Quota Dynamics
February 2009 18 / 39

Sales

Low sales in regions where quota is far implies low effort

Sales (effort) increases as possibility of making quota increases

Slowing sales (or decline) as ceiling approaches implies lower effort (ratcheting effects)

Decline in sales after ceiling is met implies little of zero effort

Quota Floor: -(b-a) Quota Ceiling: 0

Distance to Quota Ceiling: Q+q-b
Econometric Implementation
Nonparametric Estimation of the Effort Policy Function

- Control Variable
Control Variable

Quality of sales-calls (unobserved), e_t
Control Variable

- Quality of sales-calls (unobserved), e_t

Recall that the sales production function is

$$ q_{jt} = h_j(z_j) + e(s_t)D_{jt} + \varepsilon_{jt} $$
Control Variable

- Quality of sales-calls (unobserved), e_t

Recall that the sales production function is

$$q_{jt} = h_j (z_j) + e (s_t) D_{jt} + \varepsilon_{jt}$$

where D_{jt} is the number of calls made to client j at time t.

Nonparametric Estimation of the Effort Policy Function

Project effort policy on flexible orthogonal polynomial basis functions of state variables, $\vartheta (s_t)$,
Control Variable

- Quality of sales-calls (unobserved), e_t

Recall that the sales production function is

$$q_{jt} = h_j(z_j) + e(s_t)D_{jt} + \varepsilon_{jt}$$

- where D_{jt} is the number of calls made to client j at time t
- and z_j are time invariant client characteristics
Control Variable
- Quality of sales-calls (unobserved), e_t

Recall that the sales production function is

$$q_{jt} = h_j(z_j) + e(s_t)D_{jt} + \varepsilon_{jt}$$

- where D_{jt} is the number of calls made to client j at time t
- and z_j are time invariant client characteristics

Project effort policy on flexible orthogonal polynomial basis functions of state variables, $\vartheta(s_t)$,

$$q_{jt} = \delta'z_j + \lambda'\vartheta(s_t)D_{jt} + \varepsilon_{jt}$$
Econometric Implementation

Nonparametric Estimation of the Effort Policy Function

- Control Variable
 - Quality of sales-calls (unobserved), e_t

- Recall that the sales production function is
 \[q_{jt} = h_j(z_j) + e(s_t) D_{jt} + \varepsilon_{jt} \]
 - where D_{jt} is the number of calls made to client j at time t
 - and z_j are time invariant client characteristics

- Project effort policy on flexible orthogonal polynomial basis functions of state variables, $\vartheta(s_t)$,
 \[q_{jt} = \delta' z_j + \lambda' \vartheta(s_t) D_{jt} + \varepsilon_{jt} \]

- Non-Linear Least Squares estimation provides, for each agent,
Econometric Implementation
Nonparametric Estimation of the Effort Policy Function

- Control Variable
 - Quality of sales-calls (unobserved), e_t
- Recall that the sales production function is
 \[q_{jt} = h_j(z_j) + e(s_t)D_{jt} + \epsilon_{jt} \]
 - where D_{jt} is the number of calls made to client j at time t
 - and z_j are time invariant client characteristics
- Project effort policy on flexible orthogonal polynomial basis functions of state variables, $\vartheta(s_t)$,
 \[q_{jt} = \delta'z_j + \lambda'\vartheta(s_t)D_{jt} + \epsilon_{jt} \]
- Non-Linear Least Squares estimation provides, for each agent,
 - Effort policy function, $\hat{e}_{jt} = \hat{\lambda}'\vartheta(s_t)$, and,
Control Variable

- Quality of sales-calls (unobserved), \(e_t \)

Recall that the sales production function is

\[
q_{jt} = h_j (z_j) + e (s_t) D_{jt} + \varepsilon_{jt}
\]

where \(D_{jt} \) is the number of calls made to client \(j \) at time \(t \)
and \(z_j \) are time invariant client characteristics

Project effort policy on flexible orthogonal polynomial basis functions of state variables, \(\vartheta (s_t) \),

\[
q_{jt} = \delta' z_j + \lambda' \vartheta (s_t) D_{jt} + \varepsilon_{jt}
\]

Non-Linear Least Squares estimation provides, for each agent,

- Effort policy function, \(\hat{e}_t = \hat{\lambda}' \vartheta (s_t) \), and,
- Empirical distribution of month-specific errors,

\[
\hat{e}_t = \sum_j \left(q_{jt} - \left(\delta' z_j + \hat{e} (s_t) D_{jt} \right) \right)
\]
Intuition for identification of effort

Two steps

- Step 1: Estimate period specific productivity of sales-calls
 \[q_{jt} = \delta' z_j + \gamma_t D_{jt} + \varepsilon_{jt} \]

- Step 2: Project productivity on flexible function of the state
 \[\hat{\gamma}_t = \lambda' \theta (s_t) \]
Estimation Results

Estimated Effort Policy ("average" agent)

[Diagram showing a 3D model with axes for Quota, Cumulative Sales at T-1, and Monthly Sales]
Estimation Results
Examples of Individual Effort Policy Estimates

- Cumulative Sales at T-1 vs Quota
Above quota policy was estimated using bivariate splines. (Preliminary)

For now we use,

\[a_{t+1} = 1.25 a_t + 0.539 Q_t \]

\(R^2 = 0.48 \)
Recall that optimal effort solves

\[e(s_t; \Omega, \Psi) = \arg\max_{e > 0} \{ V(s_t; \Omega, \Psi) \} \]

This requires solving for the fixed point in \(V \) and maximizing to obtain \(e_t \).

The optimal effort policy was solved using modified policy iteration (Rust 1996).

- Policy approximated over the two continuous states using 10 points in each state dimension.
- Expectations over the distribution of the demand shocks \((\epsilon_t)\) implemented using Monte Carlo integration using 1000 draws.
- Quota ratcheting error, \((\nu_{t+1})\) was integrated out using Gauss Hermite quadrature.
- Maximization involved in computing optimal policy was implemented using the highly efficient SNOPT solver.
Optimal Effort-Policy

Distortions from Quota

Effort Policy: Month 3

Figure:

Quota Increases Effort

State of Cumulative Sales Influences Effort

Misra & Nair (Rochester & Stanford)

Quota Dynamics

February 2009
Value Function
End of quarter value function

Value Function: Month 3

Dollars
Quota (100K)
Cumulative Sales (100K)

Quota Dynamics
February 2009
Predicted Sales from Model

Recovering the “Scalloped” Sales Patterns

Figure:

- DP recovers the sales pattern in the data “remarkably” well
- Under predicts sales in months 1 and 2 and overpredicts in 3.
Evaluating the compensation scheme
Comparisons with counterfactual schemes

- First-best (firm can observe effort)
Evaluating the compensation scheme
Comparisons with counterfactual schemes

- First-best (firm can observe effort)
 - Measure of cost of asymmetric information in the compensation scheme
Evaluating the compensation scheme
Comparisons with counterfactual schemes

- First-best (firm can observe effort)
 - Measure of cost of asymmetric information in the compensation scheme
 - Measure of value from investments in better monitoring
Evaluating the compensation scheme
Comparisons with counterfactual schemes

- First-best (firm can observe effort)
 - Measure of cost of asymmetric information in the compensation scheme
 - Measure of value from investments in better monitoring

- Linear contract
Evaluating the compensation scheme
Comparisons with counterfactual schemes

- First-best (firm can observe effort)
 - Measure of cost of asymmetric information in the compensation scheme
 - Measure of value from investments in better monitoring

- Linear contract
 - Optimal under “LEN” assumptions
Evaluating the compensation scheme
Comparisons with counterfactual schemes

- First-best (firm can observe effort)
 - Measure of cost of asymmetric information in the compensation scheme
 - Measure of value from investments in better monitoring
- Linear contract
 - Optimal under “LEN” assumptions
- No intertemporal reallocation under either plan
Evaluating the compensation scheme
Comparisons with counterfactual schemes

- First-best (firm can observe effort)
 - Measure of cost of asymmetric information in the compensation scheme
 - Measure of value from investments in better monitoring
- Linear contract
 - Optimal under “LEN” assumptions
- No intertemporal reallocation under either plan
- Approach will be to simulate effort and sales, under the two plans
Counterfactuals: Alternative Compensation Schemes
Comparing to the first best

- First best achieves quarterly sales of about $800,000
- Compared to average sales of $370,000 under the current plan
- A linear compensation plan with a 9% commission would achieve similar sales.
Conclusions

- Developed a realistic framework to understand the net effects of quota based schemes in real-world business settings.
Conclusions

- Developed a realistic framework to understand the net effects of quota based schemes in real-world business settings
- Key point is that evaluation has to be based on a counterfactual
Conclusions

- Developed a realistic framework to understand the net effects of quota based schemes in real-world business settings.
- Key point is that evaluation has to be based on a counterfactual.
- Presented a dynamic, structural, model to analyze problem.
Developed a realistic framework to understand the net effects of quota based schemes in real-world business settings

Key point is that evaluation has to be based on a counterfactual

Presented a dynamic, structural, model to analyze problem

Model-free, and simulation based evidence suggests strong intertemporal effects, and large costs of asymmetric information in contract
Conclusions

- Developed a realistic framework to understand the net effects of quota based schemes in real-world business settings
- Key point is that evaluation has to be based on a counterfactual
- Presented a dynamic, structural, model to analyze problem
- Model-free, and simulation based evidence suggests strong intertemporal effects, and large costs of asymmetric information in contract
- Continuing to evaluate other counterfactuals to better understand policy, and to generate normative predictions for the firm
Conclusions

- Developed a realistic framework to understand the net effects of quota based schemes in real-world business settings
- Key point is that evaluation has to be based on a counterfactual
- Presented a dynamic, structural, model to analyze problem
- Model-free, and simulation based evidence suggests strong intertemporal effects, and large costs of asymmetric information in contract
- Continuing to evaluate other counterfactuals to better understand policy, and to generate normative predictions for the firm
 - Your comments are welcome!
Thank you!
Analysis of Sales-Calls

Sales-Calls are not a decision variable for the agent

- Neither number nor allocation of calls across clients is under control of the agent.
- Management pre-specifies number and distribution of calls across client types.
- Agents adhere closely to this top-down management specification.
- Though sales-calls are observed, the firm specifies compensation based on sales, not calls.
Analysis of Sales-Calls

Agents adhere closely to specifications
Analysis of Sales-Calls

Sales-Calls do not explain sales, and are unrelated to quota attainment

Figure: Number of sales-calls and Realized Sales
Analysis of Sales-Calls

Sales-Calls Distribution across clients do not vary by month-of-the-quarter

Figure: Sales-Calls by Client Type
Analysis of Sales-Calls
Sales-Calls Distribution across clients do not vary by month-of-the-quarter

Figure: Proportion of calls made by month-of-quarter to type ‘A’ clients
Analysis of Sales-Calls

Sales-Calls Distribution across clients do not vary by month-of-the-quarter

Figure: Proportion of calls made by month-of-quarter to type ‘B’ clients
Analysis of Sales-Calls

Sales-Calls Distribution across clients do not vary by month-of-the-quarter

Figure: Proportion of calls made by month-of-quarter to type ‘C’ clients